Nonlinear Dynamics

http://link.springer.com/journal/11071

List of Papers (Total 144)

Classical robots perturbed by Lévy processes: analysis and Lévy disturbance rejection methods

The stability and convergence of state, disturbance and parametric estimates of a robot have been analyzed using the Lyapunov method in the existing literature. In this paper, we analyze the problem of stochastic stability and also prove some results regarding behavior of statistically averaged Lyapunov energy function in the presence of jerk noise modeled as the sum of independent ...

Dynamical behavior and exact solution in invariant manifold for a septic derivative nonlinear Schrödinger equation

In this paper, we consider a pulse dynamics in nonlinear optics (fiber-optic communications) in the presence of both self-steepening and septic nonlinear effects. Propagating profiles of the septic derivative nonlinear Schrödinger model which are isolated via coupled integrable invariants of motion, that admits exact solution, are investigated by a method of dynamical systems. By ...

Application of dynamic optimisation to stabilise bending moments and top tension forces in risers

The study discusses the problem of determining vertical displacements of a riser’s ends, which, despite its horizontal displacements induced by waves, mitigate stresses. A spatial model of riser dynamics is presented that considers the geometric nonlinearity due to large deflections. The Rigid Finite Element Method was used for riser discretisation. Analyses are reported that ...

Inertia forces and shape integrals in the floating frame of reference formulation

Modeling and analysis of complex dynamical systems can be effectively performed using multibody system (MBS) simulation software. Many modern MBS packages are able to efficiently and reliably handle rigid and flexible bodies, often offering a wide choice of different formulations. Despite many advances in modeling of flexible systems, the most widely used formulation remains the ...

Egalitarian versus prioritarian approach in multiple task motion planning for nonholonomic systems

In this paper, two different concepts of multiple task motion planning algorithm for nonholonomic systems are considered. The egalitarian approach treats all the tasks equivalently and tries to solve all the tasks simultaneously. In contrast, the prioritarian approach arranges the tasks with decreasing priorities in such a way that the solution of the lower order task should not ...

Controlling multistability in a vibro-impact capsule system

This work concerns the control of multistability in a vibro-impact capsule system driven by a harmonic excitation. The capsule is able to move forward and backward in a rectilinear direction, and the main objective of this work is to control such motion in the presence of multiple coexisting periodic solutions. A position feedback controller is employed in this study, and our ...

Effects of play and inerter nonlinearities on the performance of tuned mass damper

In this paper, we analyze the dynamics of tuned mass dampers with inerters. In the beginning, we describe the influence of inertance value with respect to the overall mass of the damping device. For further analysis, we pick three practically significant cases—each corresponding to different composition of tuned mass damper inertia. Then, we focus on the effects caused by different ...

Reduction of dimension for nonlinear dynamical systems

We consider reduction of dimension for nonlinear dynamical systems. We demonstrate that in some cases, one can reduce a nonlinear system of equations into a single equation for one of the state variables, and this can be useful for computing the solution when using a variety of analytical approaches. In the case where this reduction is possible, we employ differential elimination ...

Enhancing the isolation performance by a nonlinear secondary spring in the Zener model

In order to obtain an isolator with low resonance amplitude as well as good isolation performance at high frequencies, this paper explores the usage of nonlinear stiffness elements to improve the transmissibility efficiency of a sufficient linear damped vibration isolator featured with the Zener model. More specifically, we intend to improve its original poor high-frequency ...

Switching processes in polynomiography

Mandelbrot and Julia sets are examples of fractal patterns generated in the complex plane. In the literature, we can find many generalizations of those sets. One of such generalizations is the use of switching process. In this paper, we introduce some switching processes to another type of complex fractals, namely polynomiographs. Polynomiograph is an image presenting the ...

Friction-induced vibration of an elastic disc and a moving slider with separation and reattachment

The transverse vibration of an elastic disc, excited by a preloaded mass–damper–spring slider dragged around on the disc surface at a constant rotating speed and undergoing in-plane stick–slip oscillation due to friction, is studied. As the vertical vibration of the slider grows at certain conditions, it can separate from the disc and then reattach to the disc. Numerical simulation ...

Targeted energy transfer and modal energy redistribution in automotive drivetrains

The new generations of compact high output power-to-weight ratio internal combustion engines generate broadband torsional oscillations, transmitted to lightly damped drivetrain systems. A novel approach to mitigate these untoward vibrations can be the use of nonlinear absorbers. These act as Nonlinear Energy Sinks (NESs). The NES is coupled to the primary (drivetrain) structure, ...

Nonlinear predictive control of dynamic systems represented by Wiener–Hammerstein models

This paper is concerned with computationally efficient nonlinear model predictive control (MPC) of dynamic systems described by cascade Wiener–Hammerstein models. The Wiener–Hammerstein structure consists of a nonlinear steady-state block sandwiched by two linear dynamic ones. Two nonlinear MPC algorithms are discussed in details. In the first case the model is successively ...

Continuation techniques for analysis of whole aeroengine dynamics with imperfect bifurcations and isolated solutions

The analysis of whole engine rotordynamic models is an important element in the design of aerojet engines. The models include gyroscopic effects and allow for rubbing contact between rotor and stator components such as bladed discs and casing. Due to the nonlinearities inherent to the system, bifurcations in the frequency response may arise. Reliable and efficient methods to ...

Nonlinear vibrations of a misaligned bladed Jeffcott rotor

This paper describes the numerical and experimental investigation of the nonlinear vibration of a bladed Jeffcott rotor. The nonlinearity in the system is due to discontinuities caused by multiple contacts with an outer ring as well as the nonlinear deformation of the massless blades. Contacts occur since the rotor shaft is initially misaligned by displacing the outer ring in one ...

A fast sampling method for estimating the domain of attraction

Most stabilizing controllers designed for nonlinear systems are valid only within a specific region of the state space, called the domain of attraction (DoA). Computation of the DoA is usually costly and time-consuming. This paper proposes a computationally effective sampling approach to estimate the DoAs of nonlinear systems in real time. This method is validated to approximate ...

The quadratically cubic Burgers equation: an exactly solvable nonlinear model for shocks, pulses and periodic waves

A modified equation of Burgers type with a quadratically cubic (QC) nonlinear term was recently pointed out as a new exactly solvable model of mathematical physics. However, its derivation, analytical solution, computer modeling, as well as its physical applications and analysis of corresponding nonlinear wave phenomena have not been published up to now. The physical meaning and ...