The new generations of compact high output power-to-weight ratio internal combustion engines generate broadband torsional oscillations, transmitted to lightly damped drivetrain systems. A novel approach to mitigate these untoward vibrations can be the use of nonlinear absorbers. These act as Nonlinear Energy Sinks (NESs). The NES is coupled to the primary (drivetrain) structure, ...

This paper is concerned with computationally efficient nonlinear model predictive control (MPC) of dynamic systems described by cascade Wiener–Hammerstein models. The Wiener–Hammerstein structure consists of a nonlinear steady-state block sandwiched by two linear dynamic ones. Two nonlinear MPC algorithms are discussed in details. In the first case the model is successively ...

The analysis of whole engine rotordynamic models is an important element in the design of aerojet engines. The models include gyroscopic effects and allow for rubbing contact between rotor and stator components such as bladed discs and casing. Due to the nonlinearities inherent to the system, bifurcations in the frequency response may arise. Reliable and efficient methods to ...

This paper describes the numerical and experimental investigation of the nonlinear vibration of a bladed Jeffcott rotor. The nonlinearity in the system is due to discontinuities caused by multiple contacts with an outer ring as well as the nonlinear deformation of the massless blades. Contacts occur since the rotor shaft is initially misaligned by displacing the outer ring in one ...

Most stabilizing controllers designed for nonlinear systems are valid only within a specific region of the state space, called the domain of attraction (DoA). Computation of the DoA is usually costly and time-consuming. This paper proposes a computationally effective sampling approach to estimate the DoAs of nonlinear systems in real time. This method is validated to approximate ...

A modified equation of Burgers type with a quadratically cubic (QC) nonlinear term was recently pointed out as a new exactly solvable model of mathematical physics. However, its derivation, analytical solution, computer modeling, as well as its physical applications and analysis of corresponding nonlinear wave phenomena have not been published up to now. The physical meaning and ...

This paper presents an extension of the concept of dynamically consistent Jacobian inverse from robotic manipulators (holonomic systems) to non-holonomic robotic systems, like mobile robots. This new inverse is derived within the framework of the endogenous configuration space approach, following a strict analogy with the original derivation of the dynamically consistent Jacobian ...

The paper discusses a dynamic model of the system consisting of an on-board hoisting winch on a moving vessel, cable, and load. The model accounting for large rope sag and hydrodynamic drag force was used to solve the problem of dynamic optimisation. The essence of which is what angle of rotation should be selected for the hoisting winch to ensure that the load during the defined ...

On the basis of nonlinear features analysis of restoring torque, damping torque and especially hull deformation, a nonlinear roll equation of rotary-molded boats has been established. The equation includes elastic deformation term which makes the equation different from existing ones for steel boats. This paper dissected its dynamic characteristic of rolling motion from different ...

A nonlinear model reduction based on eigenmode decomposition and projection for the prediction of sub- and supercritical limit-cycle oscillation is presented herein. The paper focuses on the derivation of the reduced-order model formulation to include expansion terms up to fifth order such that higher-order nonlinear behaviour of a physical system can be captured. The method is ...

In this paper the \(N-1\) nonlinear modal interactions that occur in a nonlinear three-degree-of-freedom lumped mass system, where \(N=3\), are considered. The nonlinearity comes from springs with weakly nonlinear cubic terms. Here, the case where all the natural frequencies of the underlying linear system are close (i.e. \(\omega _{n1}: \omega _{n2}:\omega _{n3} \approx 1:1:1\)) ...

The motion planning problem for nonholonomic robotic systems is studied using the continuation method and the optimization paradigms. A new Jacobian motion planning algorithm is derived, based on a solution of the Lagrange-type optimization problem addressed in the linear approximation of the system. Performance of the new algorithm is illustrated by numeric computations performed ...

Many modern applications of the flexible multibody systems require formulations that can effectively solve problems that include large displacements and deformations having the ability to model nonlinear materials. One method that allows dealing with such systems is continuum-based absolute nodal coordinate formulation (ANCF). The objective of this study is to formulate an ...

The dynamic response of a nonlinear system with three degrees of freedom in resonance that is loaded, inter alia, with a non-ideal excitation is investigated. A direct current motor (DC motor) with an eccentrically mounted rotor serves as a non-ideal source of energy. The general coordinate corresponding to the rotor dynamics steadily increases as a result of rotational motion. The ...

In this study, the quaternion Mandelbrot sets and Julia sets (abbreviated as M–J sets) with additive and multiplicative noise perturbations are constructed and the changes of their fractal characteristics are explored. The experimental results show that the quaternion M sets with additive noise perturbations move in the direction of the noise, while the structures remain unchanged. ...