Journal of Computational Neuroscience

http://link.springer.com/journal/10827

List of Papers (Total 118)

Modeling the influence of optic flow on grid cell firing in the absence of other cues1

Information from the vestibular, sensorimotor, or visual systems can affect the firing of grid cells recorded in entorhinal cortex of rats. Optic flow provides information about the rat’s linear and rotational velocity and, thus, could influence the firing pattern of grid cells. To investigate this possible link, we model parts of the rat’s visual system and analyze their...

The spatial pattern of light determines the kinetics and modulates backpropagation of optogenetic action potentials

Optogenetics offers an unprecedented ability to spatially target neuronal stimulations. This study investigated via simulation, for the first time, how the spatial pattern of excitation affects the response of channelrhodopsin-2 (ChR2) expressing neurons. First we described a methodology for modeling ChR2 in the NEURON simulation platform. Then, we compared four most commonly...

Improved measures of phase-coupling between spikes and the Local Field Potential

An important tool to study rhythmic neuronal synchronization is provided by relating spiking activity to the Local Field Potential (LFP). Two types of interdependent spike-LFP measures exist. The first approach is to directly quantify the consistency of single spike-LFP phases across spikes, referred to here as point-field phase synchronization measures. We show that conventional...

Statistical properties of superimposed stationary spike trains

The Poisson process is an often employed model for the activity of neuronal populations. It is known, though, that superpositions of realistic, non- Poisson spike trains are not in general Poisson processes, not even for large numbers of superimposed processes. Here we construct superimposed spike trains from intracellular in vivo recordings from rat neocortex neurons and compare...

Spike suppression in a local cortical circuit induced by transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) noninvasively interferes with human cortical function, and is widely used as an effective technique for probing causal links between neural activity and cognitive function. However, the physiological mechanisms underlying TMS-induced effects on neural activity remain unclear. We examined the mechanism by which TMS disrupts neural activity...

Representation of motion onset and offset in an augmented Barlow-Levick model of motion detection

Kinetic occlusion produces discontinuities in the optic flow field, whose perception requires the detection of an unexpected onset or offset of otherwise predictably moving or stationary contrast patches. Many cells in primate visual cortex are directionally selective for moving contrasts, and recent reports suggest that this selectivity arises through the inhibition of contrast...

Correlations in state space can cause sub-optimal adaptation of optimal feedback control models

Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor...

Dynamics of temporally interleaved percept-choice sequences: interaction via adaptation in shared neural populations

At the onset of visually ambiguous or conflicting stimuli, our visual system quickly ‘chooses’ one of the possible percepts. Interrupted presentation of the same stimuli has revealed that each percept-choice depends strongly on the history of previous choices and the duration of the interruptions. Recent psychophysics and modeling has discovered increasingly rich dynamical...

What we talk about when we talk about capacitance measured with the voltage-clamp step method

Capacitance is a fundamental neuronal property. One common way to measure capacitance is to deliver a small voltage-clamp step that is long enough for the clamp current to come to steady state, and then to divide the integrated transient charge by the voltage-clamp step size. In an isopotential neuron, this method is known to measure the total cell capacitance. However, in a cell...

Fast extraction of neuron morphologies from large-scale SBFSEM image stacks

Neuron morphology is frequently used to classify cell-types in the mammalian cortex. Apart from the shape of the soma and the axonal projections, morphological classification is largely defined by the dendrites of a neuron and their subcellular compartments, referred to as dendritic spines. The dimensions of a neuron’s dendritic compartment, including its spines, is also a major...

A reafferent and feed-forward model of song syntax generation in the Bengalese finch

Adult Bengalese finches generate a variable song that obeys a distinct and individual syntax. The syntax is gradually lost over a period of days after deafening and is recovered when hearing is restored. We present a spiking neuronal network model of the song syntax generation and its loss, based on the assumption that the syntax is stored in reafferent connections from the...

Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process

Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially the Ornstein–Uhlenbeck process is popular to describe the stochastic fluctuations in the...

Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells

Significant inroads have been made to understand cerebellar cortical processing but neural coding at the output stage of the cerebellum in the deep cerebellar nuclei (DCN) remains poorly understood. The DCN are unlikely to just present a relay nucleus because Purkinje cell inhibition has to be turned into an excitatory output signal, and DCN neurons exhibit complex intrinsic...

Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise

We developed a theory of human stance control that predicted (1) how subjects re-weight their utilization of proprioceptive and graviceptive orientation information in experiments where eyes closed stance was perturbed by surface-tilt stimuli with different amplitudes, (2) the experimentally observed increase in body sway variability (i.e. the “remnant” body sway that could not...

Compositionality of arm movements can be realized by propagating synchrony

We present a biologically plausible spiking neuronal network model of free monkey scribbling that reproduces experimental findings on cortical activity and the properties of the scribbling trajectory. The model is based on the idea that synfire chains can encode movement primitives. Here, we map the propagation of activity in a chain to a linearly evolving preferred velocity...

Relating reflex gain modulation in posture control to underlying neural network properties using a neuromusculoskeletal model

During posture control, reflexive feedback allows humans to efficiently compensate for unpredictable mechanical disturbances. Although reflexes are involuntary, humans can adapt their reflexive settings to the characteristics of the disturbances. Reflex modulation is commonly studied by determining reflex gains: a set of parameters that quantify the contributions of Ia, Ib and II...

Dual oscillator model of the respiratory neuronal network generating quantal slowing of respiratory rhythm

We developed a dual oscillator model to facilitate the understanding of dynamic interactions between the parafacial respiratory group (pFRG) and the preBötzinger complex (preBötC) neurons in the respiratory rhythm generation. Both neuronal groups were modeled as groups of 81 interconnected pacemaker neurons; the bursting cell model described by Butera and others [model 1 in...

The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites

Conductance-based neuron models are frequently employed to study the dynamics of biological neural networks. For speed and ease of use, these models are often reduced in morphological complexity. Simplified dendritic branching structures may process inputs differently than full branching structures, however, and could thereby fail to reproduce important aspects of biological...

Transfer entropy—a model-free measure of effective connectivity for the neurosciences

Understanding causal relationships, or effective connectivity, between parts of the brain is of utmost importance because a large part of the brain’s activity is thought to be internally generated and, hence, quantifying stimulus response relationships alone does not fully describe brain dynamics. Past efforts to determine effective connectivity mostly relied on model based...

Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution

Forward solutions with different levels of complexity are employed for localization of current generators, which are responsible for the electric and magnetic fields measured from the human brain. The influence of brain anisotropy on the forward solution is poorly understood. The goal of this study is to validate an anisotropic model for the intracranial electric forward solution...