Journal of Computational Neuroscience

http://link.springer.com/journal/10827

List of Papers (Total 114)

Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis

Characterizing how different cortical rhythms interact and how their interaction changes with sensory stimulation is important to gather insights into how these rhythms are generated and what sensory function they may play. Concepts from information theory, such as Transfer Entropy (TE), offer principled ways to quantify the amount of causation between different frequency bands of ...

CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains

Recent developments in electrophysiological and optical recording techniques enable the simultaneous observation of large numbers of neurons. A meaningful interpretation of the resulting multivariate data, however, presents a serious challenge. In particular, the estimation of higher-order correlations that characterize the cooperative dynamics of groups of neurons is impeded by ...

Functional identification of biological neural networks using reservoir adaptation for point processes

The complexity of biological neural networks does not allow to directly relate their biophysical properties to the dynamics of their electrical activity. We present a reservoir computing approach for functionally identifying a biological neural network, i.e. for building an artificial system that is functionally equivalent to the reference biological network. Employing feed-forward ...

Kernel bandwidth optimization in spike rate estimation

Kernel smoother and a time-histogram are classical tools for estimating an instantaneous rate of spike occurrences. We recently established a method for selecting the bin width of the time-histogram, based on the principle of minimizing the mean integrated square error (MISE) between the estimated rate and unknown underlying rate. Here we apply the same optimization principle to ...

Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution

Simultaneous recordings of many single neurons reveals unique insights into network processing spanning the timescale from single spikes to global oscillations. Neurons dynamically self-organize in subgroups of coactivated elements referred to as cell assemblies. Furthermore, these cell assemblies are reactivated, or replayed, preferentially during subsequent rest or sleep ...

An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes

For the analysis of neuronal cooperativity, simultaneously recorded extracellular signals from neighboring neurons need to be sorted reliably by a spike sorting method. Many algorithms have been developed to this end, however, to date, none of them manages to fulfill a set of demanding requirements. In particular, it is desirable to have an algorithm that operates online, detects ...

A model of direction selectivity in the starburst amacrine cell network

Displaced starburst amacrine cells (SACs) are retinal interneurons that exhibit GABA A receptor-mediated and Cl − cotransporter-mediated, directionally selective (DS) light responses in the rabbit retina. They depolarize to stimuli that move centrifugally through the receptive field surround and hyperpolarize to stimuli that move centripetally through the surround (Gavrikov et al, ...

A model of feedback control for the charge-balanced suppression of epileptic seizures

Here we present several refinements to a model of feedback control for the suppression of epileptic seizures. We utilize a stochastic partial differential equation (SPDE) model of the human cortex. First, we verify the strong convergence of numerical solutions to this model, paying special attention to the sharp spatial changes that occur at electrode edges. This allows us to ...

The response of a classical Hodgkin–Huxley neuron to an inhibitory input pulse

A population of uncoupled neurons can often be brought close to synchrony by a single strong inhibitory input pulse affecting all neurons equally. This mechanism is thought to underlie some brain rhythms, in particular gamma frequency (30–80 Hz) oscillations in the hippocampus and neocortex. Here we show that synchronization by an inhibitory input pulse often fails for populations ...

Motion processing with wide-field neurons in the retino-tecto-rotundal pathway

The retino-tecto-rotundal pathway is the main visual pathway in non-mammalian vertebrates and has been found to be highly involved in visual processing. Despite the extensive receptive fields of tectal and rotundal wide-field neurons, pattern discrimination tasks suggest a system with high spatial resolution. In this paper, we address the problem of how global processing performed ...

A biologically plausible model of time-scale invariant interval timing

The temporal durations between events often exert a strong influence over behavior. The details of this influence have been extensively characterized in behavioral experiments in different animal species. A remarkable feature of the data collected in these experiments is that they are often time-scale invariant. This means that response measurements obtained under intervals of ...

Crossover inhibition in the retina: circuitry that compensates for nonlinear rectifying synaptic transmission

In the mammalian retina, complementary ON and OFF visual streams are formed at the bipolar cell dendrites, then carried to amacrine and ganglion cells via nonlinear excitatory synapses from bipolar cells. Bipolar, amacrine and ganglion cells also receive a nonlinear inhibitory input from amacrine cells. The most common form of such inhibition crosses over from the opposite visual ...

Correlations in spiking neuronal networks with distance dependent connections

Can the topology of a recurrent spiking network be inferred from observed activity dynamics? Which statistical parameters of network connectivity can be extracted from firing rates, correlations and related measurable quantities? To approach these questions, we analyze distance dependent correlations of the activity in small-world networks of neurons with current-based synapses ...

Longitudinal neuronal organization and coordination in a simple vertebrate: a continuous, semi-quantitative computer model of the central pattern generator for swimming in young frog tadpoles

When frog tadpoles hatch their swimming requires co-ordinated contractions of trunk muscles, driven by motoneurons and controlled by a Central Pattern Generator (CPG). To study this co-ordination we used a 3.5 mm long population model of the young tadpole CPG with continuous distributions of neurons and axon lengths as estimated anatomically. We found that: (1) alternating ...

Spiking neural network simulation: numerical integration with the Parker-Sochacki method

Mathematical neuronal models are normally expressed using differential equations. The Parker-Sochacki method is a new technique for the numerical integration of differential equations applicable to many neuronal models. Using this method, the solution order can be adapted according to the local conditions at each time step, enabling adaptive error control without changing the ...

The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons

The response of an oscillator to perturbations is described by its phase-response curve (PRC), which is related to the type of bifurcation leading from rest to tonic spiking. In a recent experimental study, we have shown that the type of PRC in cortical pyramidal neurons can be switched by cholinergic neuromodulation from type II (biphasic) to type I (monophasic). We explored how ...

Calcium sensitive non-selective cation current promotes seizure-like discharges and spreading depression in a model neuron

As described by others, an extracellular calcium-sensitive non-selective cation channel ([Ca2+]o-sensitive NSCC) of central neurons opens when extracellular calcium level decreases. An other non-selective current is activated by rising intracellular calcium ([Ca2+] i ). The [Ca2+]o-sensitive NSCC is not dependent on voltage and while it is permeable by monovalent cations, it is ...

A neurocomputational model for optimal temporal processing

Humans can estimate the duration of intervals of time, and psychophysical experiments show that these estimations are subject to timing errors. According to standard theories of timing, these errors increase linearly with the interval to be estimated (Weber’s law), and both at longer and shorter intervals, deviations from linearity are reported. This is not easily reconciled with ...