Development

http://dev.biologists.org

List of Papers (Total 14,778)

Coordinate post-transcriptional repression of Dpp-dependent transcription factors attenuates signal range during development

Precise control of the range of signalling molecule action is crucial for correct cell fate patterning during development. For example, Drosophila ovarian germline stem cells (GSCs) are maintained by exquisitely short-range BMP signalling from the niche. In the absence of BMP signalling, one GSC daughter differentiates into a cystoblast (CB) and this fate is stabilised by Brain ...

Arabidopsis HECATE genes function in phytohormone control during gynoecium development

The fruit, which develops from the fertilised gynoecium formed in the innermost whorl of the flower, is the reproductive organ and one of the most complex structures of an angiosperm plant. Phytohormones play important roles during flower and fruit patterning, morphogenesis and growth, and there is emerging evidence for a cross-talk between different classes of plant hormones ...

Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes

Notch signalling, SoxB and Group A bHLH ‘proneural’ genes are conserved regulators of the neurogenic program in many bilaterians. However, the ancestry of their functions and interactions is not well understood. We address this question in the sea anemone Nematostella vectensis, a representative of the Cnidaria, the sister clade to the Bilateria. It has previously been found that ...

Quantification of regenerative potential in primary human mammary epithelial cells

We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form ...

Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells

Differentiated derivatives of human pluripotent stem cells (hPSCs) are often considered immature because they resemble foetal cells more than adult, with hPSC-derived cardiomyocytes (hPSC-CMs) being no exception. Many functional features of these cardiomyocytes, such as their cell morphology, electrophysiological characteristics, sarcomere organization and contraction force, are ...

Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells

Functional assay limitations are an emerging issue in characterizing human pluripotent stem cells (PSCs). With rodent PSCs, chimera formation using pre-implantation embryos is the gold-standard assay of pluripotency (competence of progeny to differentiate into all three germ layers). In human PSCs (hPSCs), however, this can only be monitored via teratoma formation or in vitro ...

Hsa-miR-30d, secreted by the human endometrium, is taken up by the pre-implantation embryo and might modify its transcriptome

During embryo implantation, the blastocyst interacts with and regulates the endometrium, and endometrial fluid secreted by the endometrial epithelium nurtures the embryo. Here, we propose that maternal microRNAs (miRNAs) might act as transcriptomic modifier of the pre-implantation embryo. Microarray profiling revealed that six of 27 specific, maternal miRNAs were differentially ...

Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes

During vertebrate development, mesodermal fate choices are regulated by interactions between morphogens such as activin/nodal, BMPs and Wnt/β-catenin that define anterior-posterior patterning and specify downstream derivatives including cardiomyocyte, endothelial and hematopoietic cells. We used human embryonic stem cells to explore how these pathways control mesodermal fate ...

Human epidermal neural crest stem cells as a source of Schwann cells

We show that highly pure populations of human Schwann cells can be derived rapidly and in a straightforward way, without the need for genetic manipulation, from human epidermal neural crest stem cells [hEPI-NCSC(s)] present in the bulge of hair follicles. These human Schwann cells promise to be a useful tool for cell-based therapies, disease modelling and drug discovery. Schwann ...

Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro

A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form ...

Comprehensive analysis of microRNA expression in regionalized human neural progenitor cells reveals microRNA-10 as a caudalizing factor

MicroRNAs (miRNAs) have been implicated in regulating multiple processes during brain development in various species. However, the function of miRNAs in human brain development remains largely unexplored. Here, we provide a comprehensive analysis of miRNA expression of regionalized neural progenitor cells derived from human embryonic stem cells and human foetal brain. We found ...

Defining the three cell lineages of the human blastocyst by single-cell RNA-seq

Here, we provide fundamental insights into early human development by single-cell RNA-sequencing of human and mouse preimplantation embryos. We elucidate conserved transcriptional programs along with those that are human specific. Importantly, we validate our RNA-sequencing findings at the protein level, which further reveals differences in human and mouse embryo gene expression. ...

Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells

The human brain is arguably the most complex structure among living organisms. However, the specific mechanisms leading to this complexity remain incompletely understood, primarily because of the poor experimental accessibility of the human embryonic brain. Over recent years, technologies based on pluripotent stem cells (PSCs) have been developed to generate neural cells of various ...

Human pancreas development

A wealth of data and comprehensive reviews exist on pancreas development in mammals, primarily mice, and other vertebrates. By contrast, human pancreatic development has been less comprehensively reviewed. Here, we draw together those studies conducted directly in human embryonic and fetal tissue to provide an overview of what is known about human pancreatic development. We discuss ...

Modeling mouse and human development using organoid cultures

In vitro three-dimensional (3D) cultures are emerging as novel systems with which to study tissue development, organogenesis and stem cell behavior ex vivo. When grown in a 3D environment, embryonic stem cells (ESCs) self-organize into organoids and acquire the right tissue patterning to develop into several endoderm- and ectoderm-derived tissues, mimicking their in vivo ...

Genomic approaches to studying human-specific developmental traits

Changes in developmental regulatory programs drive both disease and phenotypic differences among species. Linking human-specific traits to alterations in development is challenging, because we have lacked the tools to assay and manipulate regulatory networks in human and primate embryonic cells. This field was transformed by the sequencing of hundreds of genomes – human and ...

The pluripotent state in mouse and human

In the mouse, naïve pluripotent stem cells (PSCs) are thought to represent the cell culture equivalent of the late epiblast in the pre-implantation embryo, with which they share a unique defining set of features. Recent studies have focused on the identification and propagation of a similar cell state in human. Although the capture of an exact human equivalent of the mouse naïve ...

When rejuvenation is a problem: challenges of modeling late-onset neurodegenerative disease

In contrast to the successful modeling of early-onset disorders using patient-specific cells, modeling of late-onset neurodegenerative diseases such as Parkinson's disease remains a challenge. This might be related to the often ignored fact that current induced pluripotent stem cell (iPSC) differentiation protocols yield cells that typically show the behavior of fetal stage cells. ...

The advancement of human pluripotent stem cell-derived therapies into the clinic

Human pluripotent stem cells (hPSCs) offer many potential applications for drug screening and ‘disease in a dish’ assay capabilities. However, a more ambitious goal is to develop cell therapeutics using hPSCs to generate and replace somatic cells that are lost as a result of disease or injury. This Spotlight article will describe the state of progress of some of the hPSC-derived ...

Enabling research with human embryonic and fetal tissue resources

Congenital anomalies are a significant burden on human health. Understanding the developmental origins of such anomalies is key to developing potential therapies. The Human Developmental Biology Resource (HDBR), based in London and Newcastle, UK, was established to provide embryonic and fetal material for a variety of human studies ranging from single gene expression analysis to ...

Pasiflora proteins are novel core components of the septate junction

Epithelial sheets play essential roles as selective barriers insulating the body from the environment and establishing distinct chemical compartments within it. In invertebrate epithelia, septate junctions (SJs) consist of large multi-protein complexes that localize at the apicolateral membrane and mediate barrier function. Here, we report the identification of two novel SJ ...

Yap and Taz regulate retinal pigment epithelial cell fate

The optic vesicle comprises a pool of bi-potential progenitor cells from which the retinal pigment epithelium (RPE) and neural retina fates segregate during ocular morphogenesis. Several transcription factors and signaling pathways have been shown to be important for RPE maintenance and differentiation, but an understanding of the initial fate specification and determination of ...

Trithorax and Polycomb group-dependent regulation: a tale of opposing activities

Intricate layers of regulation determine the unique gene expression profiles of a given cell and, therefore, underlie the immense phenotypic diversity observed among cell types. Understanding the mechanisms that govern which genes are expressed and which genes are silenced is a fundamental focus in biology. The Polycomb and Trithorax group chromatin proteins play important roles ...

Neuromesodermal progenitors and the making of the spinal cord

Neuromesodermal progenitors (NMps) contribute to both the elongating spinal cord and the adjacent paraxial mesoderm. It has been assumed that these cells arise as a result of patterning of the anterior neural plate. However, as the molecular mechanisms that specify NMps in vivo are uncovered, and as protocols for generating these bipotent cells from mouse and human pluripotent stem ...