Stem Cell Research & Therapy

http://link.springer.com/journal/13287

List of Papers (Total 1,192)

Autophagy is required for human umbilical cord mesenchymal stem cells to improve spatial working memory in APP/PS1 transgenic mouse model

Background Recent studies have shown that autophagy plays a central role in mesenchymal stem cells (MSCs), and many studies have shown that human umbilical cord MSCs (huMSCs) can treat Alzheimer’s disease (AD) through a variety of mechanisms. However, no studies have looked at the effects of autophagy on neuroprotective function of huMSCs in the AD mouse model. Thus, in this study ...

Human umbilical cord mesenchymal stem cell conditioned medium attenuates renal fibrosis by reducing inflammation and epithelial-to-mesenchymal transition via the TLR4/NF-κB signaling pathway in vivo and in vitro

Background Renal fibrosis is characterized by infiltration of interstitial inflammatory cells and release of inflammatory mediators, activation and proliferation of fibroblasts, and deposition of excessive extracellular matrix (ECM). The aim of this study was to evaluate the effect of human umbilical cord-derived mesenchymal stem cell (hucMSC) conditioned medium (CM) on renal ...

Stem cells and anti-aging genes: double-edged sword—do the same job of life extension

Aging impacts diseases and lifespan. With current knowledge of stem cells, it is feasible to design and test interventions that delay aging and improve both health and lifespan. Stem cells, together with anti-aging genes such as Klotho, play a crucial role in delaying the aging process. Stem cells in combination with anti-aging genes make a complex and protective shield, which ...

First clinical case report of local microinjection of autologous fat and adipose-derived stromal vascular fraction for perianal fistula in Crohn’s disease

Mesenchymal stem cell therapy is a promising treatment for perianal Crohn’s fistulas refractory to conventional therapy, which are an extremely morbid complication and a true therapeutic challenge. Autologous adipose-derived stromal vascular fraction (ADSVF) is an easily accessible source of cells with angiogenic, anti-inflammatory, immunomodulatory, and regenerative properties. ...

Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method

Background Human pluripotent stem cells (hPSCs) provide a promising cell source for ocular cell replacement therapy, but often lack standardized and xenogeneic-free culture and differentiation protocols. We aimed to develop a xeno- and feeder cell-free culture system for undifferentiated hPSCs along with efficient methods to derive ocular therapy target cells: retinal pigment ...

Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells

Background Autologous and allogeneic adult mesenchymal stem/stromal cells (MSCs) are increasingly being investigated for treating a wide range of clinical diseases. Allogeneic MSCs are especially attractive due to their potential to provide immediate care at the time of tissue injury or disease diagnosis. The prevailing dogma has been that allogeneic MSCs are immune privileged, but ...

Effects of low-intensity pulsed ultrasound (LIPUS)-pretreated human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation on primary ovarian insufficiency in rats

Background Human amnion-derived mesenchymal stem cells (hAD-MSCs) have the features of mesenchymal stem cells (MSCs). Low-intensity pulsed ultrasound (LIPUS) can promote the expression of various growth factors and anti-inflammatory molecules that are necessary to keep the follicle growing and to reduce granulosa cell (GC) apoptosis in the ovary. This study aims to explore the ...

Adipose tissue-derived stem cells ameliorate hyperglycemia, insulin resistance and liver fibrosis in the type 2 diabetic rats

Background Type 2 diabetes (T2D) is closely associated with liver fibrosis, but no effective treatments are currently available. This study was designed to investigate the therapeutic effects of ADSCs on insulin resistance, hyperglycemia, and liver fibrosis on T2D rats. Methods We first established a T2D rat model with liver fibrosis by using the combination of a high-fat diet ...

Pentosan polysulfate binds to STRO-1+ mesenchymal progenitor cells, is internalized, and modifies gene expression: a novel approach of pre-programing stem cells for therapeutic application requiring their chondrogenesis

Background The pharmaceutical agent pentosan polysulfate (PPS) is known to induce proliferation and chondrogenesis of mesenchymal progenitor cells (MPCs) in vitro and in vivo. However, the mechanism(s) of action of PPS in mediating these effects remains unresolved. In the present report we address this issue by investigating the binding and uptake of PPS by MPCs and monitoring gene ...

Bone marrow CD34+ cell subset under induction of moderate stiffness of extracellular matrix after myocardial infarction facilitated endothelial lineage commitment in vitro

Background The stiffness of the myocardial extracellular matrix (ECM) and the transplanted cell type are vitally important in promoting angiogenesis. However, the combined effect of the two factors remains uncertain. The purpose of this study is to investigate in vitro the combined effect of myocardial ECM stiffness postinfarction with a bone marrow-derived cell subset expressing ...

TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway

Background Low-intensity pulsed ultrasound (LIPUS) is a mechanical stimulus that plays a key role in regulating the differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the way in which it affects the chondrogenic differentiation of BMSCs remains unknown. In this study, we aimed to investigate whether LIPUS is able to influence TGF-β1-induced chondrogenesis of ...

Evaluating the oxysterol combination of 22(S)-hydroxycholesterol and 20(S)-hydroxycholesterol in periodontal regeneration using periodontal ligament stem cells and alveolar bone healing models

Background Oxysterols, oxygenated by-products of cholesterol biosynthesis, play roles in various physiological and pathological systems. However, the effects of oxysterols on periodontal regeneration are unknown. This study investigated the effects of the specific oxysterol combination of 22(S)-hydroxycholesterol and 20(S)-hydroxycholesterol (SS) on the regeneration of periodontal ...

Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis

Background Mesenchymal stem cells (MSCs) are capable of immunomodulation and tissue regeneration, highlighting their potential translational application for treating inflammatory bone disorders. MSC-mediated immunomodulation is regulated by proinflammatory cytokines and pathogen-associated molecular patterns such as lipopolysaccharide (LPS). Previous studies showed that MSCs ...

Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage

Background Human amniotic epithelial cells (hAECs) are attractive candidates for regenerative medical therapy, with the potential to replace deficient cells and improve functional recovery after injury. Previous studies have demonstrated that transplantation of hAECs effectively alleviate chemotherapy-induced ovarian damage via inhibiting granulose cells apoptosis in animal models ...

Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

Background Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are ...

MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction

Background Our study aim was to evaluate the therapeutic efficacy and mechanisms of miR-133-overexpressing mesenchymal stem cells (MSCs) on acute myocardial infarction. Methods Rat MSCs were isolated and purified by whole bone marrow adherent culturing. After transfection with the agomir or antagomir of miR-133, MSCs were collected for assay of cell vitality, apoptosis, and cell ...

Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats

Background Intrauterine adhesion (IUA) is a common uterine cavity disease which can be caused by mechanical damage that may eventually lead to infertility and pregnancy abnormalities. Since the effect of therapeutic drugs appears disappointing, cell therapy has emerged as an alternative choice for endometrium regeneration. The aim of this study is to investigate whether the ...

The similarities between smDCs and regDCs in alleviating the immune injury caused by transplantation of hepatocytes differentiated from ESCs

Background This study aimed to investigate the tolerogenic mechanisms induced by semimature dendritic cells (smDCs) and regulatory dendritic cells (regDCs) after transplantation of hepatocytes differentiated from mouse embryonic stem cells (ESCs) and to confirm the low immunogenicity of hepatocytes differentiated from ESCs. Methods Green fluorescent protein-labeled ESCs collected ...

Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration

Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to ...

Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice

Background Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs) from radiation injury is an important goal in the development of medical countermeasure agents (MCM). We recently identified thioredoxin (TXN) as a novel ...

Autologous adipose-derived regenerative cell therapy modulates development of hypertrophic scarring in a red Duroc porcine model

Background Effective prevention and treatment of hypertrophic scars (HTSs), a common consequence of deep-partial thickness injury, remain a significant clinical challenge. Previous studies from our group have shown that autologous adipose-derived regenerative cells (ADRCs) represent a promising approach to improve wound healing and, thereby, impact HTS development. The purpose of ...

Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation

Background Cell source plays a key role in cell-based cartilage repair and regeneration. Recent efforts in cell coculture have attempted to combine the advantages and negate the drawbacks of the constituent cell types. The aim of this study was to evaluate the chondrogenic outcome of articular chondrocytes (ACs) and infrapatellar fat pad (IPFP)-derived mesenchymal stem cells (MSCs) ...

Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study

Background Adipose tissue-derived mesenchymal stem cells (AT-MSCs) offer potential as a therapeutic option for chronic discogenic low back pain (LBP) because of their immunomodulatory functions and capacity for cartilage differentiation. The goal of this study was to assess the safety and tolerability of a single intradiscal implantation of combined AT-MSCs and hyaluronic acid (HA) ...

Therapeutic effects of bone marrow-derived mononuclear cells from healthy or silicotic donors on recipient silicosis mice

Background Administration of bone marrow mononuclear cells (BMMCs) modulates lung inflammation and fibrosis in experimental silicosis. However, no studies have evaluated whether silicosis affects the efficacy of autologous BMMCs treatment. We hypothesized that BMMCs obtained from healthy or silicotic mice may improve lung function, but they might affect the inflammatory and ...

TGFβ3 recruits endogenous mesenchymal stem cells to initiate bone regeneration

Background The recruitment of a sufficient number of endogenous mesenchymal stem cells (MSCs) is the first stage of in-situ tissue regeneration. Transforming growth factor beta-3 (TGFβ3) could recruit stem or progenitor cells and endothelial cells to participate in tissue regeneration. However, the mechanism of TGFβ3 recruiting MSCs toward bone regeneration has remained obscure. ...