Stem Cell Research & Therapy

http://link.springer.com/journal/13287

List of Papers (Total 1,333)

Neurotransplantation of stem cells genetically modified to express human dopamine transporter reduces alcohol consumption

Introduction Regulated neurotransmitter actions in the mammalian central nervous system determine brain function and control peripheral organs and behavior. Although drug-seeking behaviors, including alcohol consumption, depend on central neurotransmission, modification of neurotransmitter actions in specific brain nuclei remains challenging. Herein, we report a novel approach...

Stem cells for the treatment of neurodegenerative diseases

Stem cells offer an enormous pool of resources for the understanding of the human body. One proposed use of stem cells has been as an autologous therapy. The use of stem cells for neurodegenerative diseases has become of interest. Clinical applications of stem cells for Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis will increase in...

Matrix elasticity in vitro controls muscle stem cell fate in vivo

Almost every laboratory that grows mammalian cells today grows their cells on tissue culture plastic, which was introduced to cell culture decades ago based on properties such as inertness, transparency, and so forth. However, plastic is rigid and unlike the many soft tissues in the body. Polymer gel systems that mimic the softness of various tissues have been developed over the...

Role of Oct4 in maintaining and regaining stem cell pluripotency

Pluripotency, a characteristic of cells in the inner cell mass of the mammalian preimplantation blastocyst as well as of embryonic stem cells, is defined as the ability of a cell to generate all of the cell types of an organism. A group of transcription factors is essential for the establishment and maintenance of the pluripotent state. Recent studies have demonstrated that...

Homing in on a biological joint replacement

The use of tissue engineering therapies for treating damaged articular cartilage has traditionally focused on cell-based therapies for the repair of focal chondral or osteochondral defects. A recent study by Lee and colleagues in the Lancet shows exciting proof-of-concept that an acellular scaffold containing transforming growth factor beta 3 can induce homing of cells that...

Differential fate and functional outcome of lithium chloride primed adult neural progenitor cell transplants in a rat model of Huntington disease

Introduction The ability to predetermine the fate of transplanted neural progenitor cells (NPCs) and specifically to direct their maturation has the potential to enhance the efficiency of cell-transplantation therapy for neurodegenerative disease. We previously demonstrated that transient exposure of subventricular zone (SVZ)-derived adult NPCs to lithium chloride during in vitro...

Murine amniotic fluid stem cells contribute mesenchymal but not epithelial components to reconstituted mammary ducts

Introduction Amniotic fluid harbors cells indicative of all three germ layers, and pluripotent fetal amniotic fluid stem cells (AFSs) are considered potentially valuable for applications in cellular therapy and tissue engineering. We investigated whether it is possible to direct the cell fate of AFSs in vivo by transplantation experiments into a particular microenvironment, the...

Human CD34+ cells mobilized by granulocyte colony-stimulating factor ameliorate radiation-induced liver damage in mice

Introduction On the basis of the recently recognized potential of hematopoietic stem cells (HSCs) to give rise to hepatocytes, we have assessed the potential of granulocyte colony-stimulating factor (G-CSF)-mobilized bone marrow-derived CD34+ HSCs to contribute to faster recovery and promote regeneration process after acute liver injury by radiation. Methods G-CSF-mobilized CD34...

Controlling the direction of division

Quyn and colleagues report that gut stem cells have a biased spindle orientation and asymmetric retention of label-retaining DNA. These features are lost in mouse and human tissues when the microtubule binding protein Apc is mutated. In the developing kidney, Apc acts downstream from primary cilium signaling to influence spindle orientation when noncanonical Wnt signaling...

Efficient, high-throughput transfection of human embryonic stem cells

Introduction Genetic manipulation of human embryonic stem cells (hESC) has been limited by their general resistance to common methods used to introduce exogenous DNA or RNA. Efficient and high throughput transfection of nucleic acids into hESC would be a valuable experimental tool to manipulate these cells for research and clinical applications. Methods We investigated the...

Advances in mesenchymal stem cell-mediated gene therapy for cancer

Mesenchymal stem cells have a natural tropism for tumours and their metastases, and are also considered immunoprivileged. This remarkable combination of properties has formed the basis for many studies investigating their potential as tumour-specific delivery vehicles for suicide genes, oncolytic viruses and secreted therapeutic proteins. The aim of the present review is to...

Experimental approaches for the generation of induced pluripotent stem cells

Derivation of autologous induced pluripotent stem cells (iPSCs) through direct reprogramming of easily accessible somatic cells holds the potential to transform the field of regenerative medicine. Since Takahashi and Yamanaka's groundbreaking study describing the generation of iPSCs by retroviral-mediated delivery of defined transcription factors, substantial progress has been...

Extrinsic regulation of satellite cell specification

Cellular commitment during vertebrate embryogenesis is controlled by an interplay of intrinsic regulators and morphogenetic signals. These mechanisms recruit a subset of cells in the developing organism to become the ancestors of skeletal muscle. Signals that control progression through the myogenic lineage converge on a battery of hierarchically organized transcription factors...

Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns

The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications...

Activin A expression regulates multipotency of mesenchymal progenitor cells

Introduction Bone marrow (BM) stroma currently represents the most common and investigated source of mesenchymal progenitor cells (MPCs); however, comparable adult progenitor or stem cells have also been isolated from a wide variety of tissues. This study aims to assess the functional similarities of MPCs from different tissues and to identify specific factor(s) related to their...

Bone tissue engineering with human stem cells

Treatment of extensive bone defects requires autologous bone grafting or implantation of bone substitute materials. An attractive alternative has been to engineer fully viable, biological bone grafts in vitro by culturing osteogenic cells within three-dimensional scaffolds, under conditions supporting bone formation. Such grafts could be used for implantation, but also as...

Expression of migration-related genes is progressively upregulated in murine Lineage-Sca-1+c-Kit+ population from the fetal to adult stages of development

Introduction Hematopoietic stem cells (HSCs) follow a genetically programmed pattern of migration during development. Extracellular matrix and adhesion molecules, as well as chemokines and their receptors, are important in adult HSC migration. However, little is known about the role these molecules play at earlier developmental stages. Methods We have analyzed by quantitative...

Cancerous stem cells: deviant stem cells with cancer-causing misbehavior

Stem cells maintain homeostasis in adult tissues via self-renewal and generation of terminally differentiated cells. Alterations in this intricate balance can result in disease. It has become increasingly evident that cancer can be initiated at the level of stem cells. Therefore, understanding what causes stem cells to become cancerous may lead to new therapeutic approaches...

Tbx3: another important piece fitted into the pluripotent stem cell puzzle

Induced pluripotent stem cells (iPSCs) are novel tools for biomedical research, with a promise for future regenerative medicine applications. Recently, Han and colleagues reported in Nature that T box gene 3 (Tbx3) can improve the quality of mouse iPSCs and increase their germline transmission efficacy. This observation contributes greatly to the improvement of iPSC technology...

Comment on basal epithelial stem cells as efficient targets for prostate cancer initiation

Human prostate adenocarcinoma is a multicentric disease with histological heterogeneity and variation in biological features. The present study showed that a cell with stem properties undergoing oncogenic transformation can produce prostate mouse lesions with varied histological phenotypes that resemble different grades of human prostate cancer. This powerful observation is...

Mesenchymal stem cells immunosuppressive properties: is it specific to bone marrow-derived cells?

Based on their capacity to suppress immune responses, multipotent mesenchymal stromal cells (MSCs) are intensively studied for regenerative medicine. Moreover, MSCs have paracrine effects, including immunomodulation that occurs through the secretion of soluble mediators, including nitric oxide or interleukin-6, transforming growth factor-beta, human leukocyte antigen G5, and...

Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study

Introduction This study aimed to determine the homing potential and fate of epidermal neural crest stem cells (eNCSCs) derived from hair follicles, and bone marrow-derived stem cells (BMSCs) of mesenchymal origin, in a lipopolysaccharide (LPS)-induced inflammatory lesion model in the rat brain. Both eNCSCs and BMSCs are easily accessible from adult tissues by using minimally...

Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype

Introduction Mesenchymal stem cells (MSCs) offer promise for intervertebral disc (IVD) repair and regeneration because they are easily isolated and expanded, and can differentiate into several mesenchymal tissues. Notochordal (NC) cells contribute to IVD development, incorporate into the nucleus pulposus (NP), and stimulate mature disc cells. However, there have been no studies...

Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells

Adipose tissue is now recognized as an accessible, abundant, and reliable site for the isolation of adult stem cells suitable for tissue engineering and regenerative medicine applications. The past decade has witnessed an explosion of preclinical data relating to the isolation, characterization, cryopreservation, differentiation, and transplantation of freshly isolated stromal...

Selection and reliability of internal reference genes for quantitative PCR verification of transcriptomics during the differentiation process of porcine adult mesenchymal stem cells

IntroductionThe objective of this study was to find highly reliable internal-control genes (ICGs) for normalization of qPCR data from porcine adult mesenchymal stem cells induced to differentiate toward adipogenic and osteogenic lineages.MethodsStem cells were acquired from subcutaneous back fat and bone marrow of three castrated Yorkshire crossbred male pigs. Adipose and bone...