Stem Cell Research & Therapy

http://link.springer.com/journal/13287

List of Papers (Total 1,335)

TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway

BackgroundLow-intensity pulsed ultrasound (LIPUS) is a mechanical stimulus that plays a key role in regulating the differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the way in which it affects the chondrogenic differentiation of BMSCs remains unknown. In this study, we aimed to investigate whether LIPUS is able to influence TGF-β1-induced chondrogenesis of...

Mesenchymal stem cells decrease lung inflammation during sepsis, acting through inhibition of the MAPK pathway

Background Sepsis is a severe medical condition that ranks among the top 10 causes of death worldwide and which has permanently high incidence rates. Mesenchymal stem cells (MSCs) have been found to be potent modulators of immune responses. More importantly, there is evidence that MSCs have a beneficial effect on preclinical models of polymicrobial sepsis. However, the changes...

Immunoprivileged no more: measuring the immunogenicity of allogeneic adult mesenchymal stem cells

Background Autologous and allogeneic adult mesenchymal stem/stromal cells (MSCs) are increasingly being investigated for treating a wide range of clinical diseases. Allogeneic MSCs are especially attractive due to their potential to provide immediate care at the time of tissue injury or disease diagnosis. The prevailing dogma has been that allogeneic MSCs are immune privileged...

Promoting the expansion and function of human corneal endothelial cells with an orbital adipose-derived stem cell-conditioned medium

Background Corneal endothelial dysfunction causes severe impairment of vision. The only solution is corneal transplantation. However, this treatment is hampered by a worldwide shortage of donor corneas. New therapies may replace the conventional donor corneal transplantation alongside the developments in regenerative medicine and tissue engineering, but sufficient functional...

Adipose tissue-derived stem cells ameliorate hyperglycemia, insulin resistance and liver fibrosis in the type 2 diabetic rats

Background Type 2 diabetes (T2D) is closely associated with liver fibrosis, but no effective treatments are currently available. This study was designed to investigate the therapeutic effects of ADSCs on insulin resistance, hyperglycemia, and liver fibrosis on T2D rats. Methods We first established a T2D rat model with liver fibrosis by using the combination of a high-fat diet...

Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway

Background Strontium is a widely used anti-osteoporotic agent due to its dual effects on inhibiting bone resorption and stimulating bone formation. Thus, we studied the dose response of strontium on osteo-inductive efficiency in human adipose-derived stem cells (hASCs). Method Qualitative alkaline phosphatase (ALP) staining, quantitative ALP activity, Alizarin Red staining, real...

Pentosan polysulfate binds to STRO-1+ mesenchymal progenitor cells, is internalized, and modifies gene expression: a novel approach of pre-programing stem cells for therapeutic application requiring their chondrogenesis

Background The pharmaceutical agent pentosan polysulfate (PPS) is known to induce proliferation and chondrogenesis of mesenchymal progenitor cells (MPCs) in vitro and in vivo. However, the mechanism(s) of action of PPS in mediating these effects remains unresolved. In the present report we address this issue by investigating the binding and uptake of PPS by MPCs and monitoring...

Transplantation of dental pulp stem cells improves long-term diabetic polyneuropathy together with improvement of nerve morphometrical evaluation

Background Although previous reports have revealed the therapeutic potential of stem cell transplantation in diabetic polyneuropathy, the effects of cell transplantation on long-term diabetic polyneuropathy have not been investigated. In this study, we investigated whether the transplantation of dental pulp stem cells (DPSCs) ameliorated long-term diabetic polyneuropathy in...

Bone marrow CD34+ cell subset under induction of moderate stiffness of extracellular matrix after myocardial infarction facilitated endothelial lineage commitment in vitro

Background The stiffness of the myocardial extracellular matrix (ECM) and the transplanted cell type are vitally important in promoting angiogenesis. However, the combined effect of the two factors remains uncertain. The purpose of this study is to investigate in vitro the combined effect of myocardial ECM stiffness postinfarction with a bone marrow-derived cell subset expressing...

Evaluating the oxysterol combination of 22(S)-hydroxycholesterol and 20(S)-hydroxycholesterol in periodontal regeneration using periodontal ligament stem cells and alveolar bone healing models

Background Oxysterols, oxygenated by-products of cholesterol biosynthesis, play roles in various physiological and pathological systems. However, the effects of oxysterols on periodontal regeneration are unknown. This study investigated the effects of the specific oxysterol combination of 22(S)-hydroxycholesterol and 20(S)-hydroxycholesterol (SS) on the regeneration of...

Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis

Background Mesenchymal stem cells (MSCs) are capable of immunomodulation and tissue regeneration, highlighting their potential translational application for treating inflammatory bone disorders. MSC-mediated immunomodulation is regulated by proinflammatory cytokines and pathogen-associated molecular patterns such as lipopolysaccharide (LPS). Previous studies showed that MSCs...

Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue

Background Mesenchymal stem cells (MSCs) possess intrinsic regeneration capacity as part of the repair process in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. However, which cell type is more effective and suitable for cell therapy remains to be answered. The intrinsic molecular mechanism supporting the...

Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges

Novel therapies are urgently needed to address the rising incidence and prevalence of acute kidney injury (AKI) and chronic kidney disease (CKD). Mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental AKI and CKD, and have been used in the clinic for more than a decade with an excellent safety profile. The regenerative effects of MSCs do not rely on...

Celastrol improves self-renewal and differentiation of human tendon-derived stem cells by suppressing Smad7 through hypoxia

Background We aimed to evaluate the potential enhancing effect of celastrol on the stemness of human tendon-derived stem cells (hTSCs) in vitro and the underlying molecular mechanisms. Methods The capability of hTSC self-renewal was assessed by cell proliferation and colony formation as determined with the CCK-8 kit. Adipogenesis, chondrogenesis, and osteogenesis were determined...

Tracing GFP-labeled WJMSCs in vivo using a chronic salpingitis model: an animal experiment

BackgroundThe present study was conducted to evaluate the distribution of Wharton’s jelly-derived mesenchymal stem cells (WJMSCs) and their repairing function on the oviduct.MethodsWJMSCs were transfected with the LV3-GFP-PURO lentivirus. Female New Zealand rabbits (n = 24) were divided randomly into control A and B groups and experimental C and D groups to establish inflammation...

Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage

Background Human amniotic epithelial cells (hAECs) are attractive candidates for regenerative medical therapy, with the potential to replace deficient cells and improve functional recovery after injury. Previous studies have demonstrated that transplantation of hAECs effectively alleviate chemotherapy-induced ovarian damage via inhibiting granulose cells apoptosis in animal...

Laser-modified titanium surfaces enhance the osteogenic differentiation of human mesenchymal stem cells

Background Titanium surfaces have been modified by various approaches with the aim of improving the stimulation of osseointegration. Laser beam (Yb-YAG) treatment is a controllable and flexible approach to modifying surfaces. It creates a complex surface topography with micro and nano-scaled patterns, and an oxide layer that can improve the osseointegration of implants...

Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

Background Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are...

MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction

Background Our study aim was to evaluate the therapeutic efficacy and mechanisms of miR-133-overexpressing mesenchymal stem cells (MSCs) on acute myocardial infarction. Methods Rat MSCs were isolated and purified by whole bone marrow adherent culturing. After transfection with the agomir or antagomir of miR-133, MSCs were collected for assay of cell vitality, apoptosis, and cell...

Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats

Background Intrauterine adhesion (IUA) is a common uterine cavity disease which can be caused by mechanical damage that may eventually lead to infertility and pregnancy abnormalities. Since the effect of therapeutic drugs appears disappointing, cell therapy has emerged as an alternative choice for endometrium regeneration. The aim of this study is to investigate whether the...

The similarities between smDCs and regDCs in alleviating the immune injury caused by transplantation of hepatocytes differentiated from ESCs

BackgroundThis study aimed to investigate the tolerogenic mechanisms induced by semimature dendritic cells (smDCs) and regulatory dendritic cells (regDCs) after transplantation of hepatocytes differentiated from mouse embryonic stem cells (ESCs) and to confirm the low immunogenicity of hepatocytes differentiated from ESCs.MethodsGreen fluorescent protein-labeled ESCs collected...

Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration

Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to...

Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice

Background Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs) from radiation injury is an important goal in the development of medical countermeasure agents (MCM). We recently identified thioredoxin (TXN) as a novel...

Autologous adipose-derived regenerative cell therapy modulates development of hypertrophic scarring in a red Duroc porcine model

Background Effective prevention and treatment of hypertrophic scars (HTSs), a common consequence of deep-partial thickness injury, remain a significant clinical challenge. Previous studies from our group have shown that autologous adipose-derived regenerative cells (ADRCs) represent a promising approach to improve wound healing and, thereby, impact HTS development. The purpose of...

Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation

Background Cell source plays a key role in cell-based cartilage repair and regeneration. Recent efforts in cell coculture have attempted to combine the advantages and negate the drawbacks of the constituent cell types. The aim of this study was to evaluate the chondrogenic outcome of articular chondrocytes (ACs) and infrapatellar fat pad (IPFP)-derived mesenchymal stem cells...