Stem Cell Research & Therapy

http://link.springer.com/journal/13287

List of Papers (Total 1,325)

Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis

Background Mesenchymal stem cells (MSCs) are capable of immunomodulation and tissue regeneration, highlighting their potential translational application for treating inflammatory bone disorders. MSC-mediated immunomodulation is regulated by proinflammatory cytokines and pathogen-associated molecular patterns such as lipopolysaccharide (LPS). Previous studies showed that MSCs...

Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue

Background Mesenchymal stem cells (MSCs) possess intrinsic regeneration capacity as part of the repair process in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. However, which cell type is more effective and suitable for cell therapy remains to be answered. The intrinsic molecular mechanism supporting the...

Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges

Novel therapies are urgently needed to address the rising incidence and prevalence of acute kidney injury (AKI) and chronic kidney disease (CKD). Mesenchymal stem/stromal cells (MSCs) have shown promising results in experimental AKI and CKD, and have been used in the clinic for more than a decade with an excellent safety profile. The regenerative effects of MSCs do not rely on...

Celastrol improves self-renewal and differentiation of human tendon-derived stem cells by suppressing Smad7 through hypoxia

Background We aimed to evaluate the potential enhancing effect of celastrol on the stemness of human tendon-derived stem cells (hTSCs) in vitro and the underlying molecular mechanisms. Methods The capability of hTSC self-renewal was assessed by cell proliferation and colony formation as determined with the CCK-8 kit. Adipogenesis, chondrogenesis, and osteogenesis were determined...

Tracing GFP-labeled WJMSCs in vivo using a chronic salpingitis model: an animal experiment

Background The present study was conducted to evaluate the distribution of Wharton’s jelly-derived mesenchymal stem cells (WJMSCs) and their repairing function on the oviduct. Methods WJMSCs were transfected with the LV3-GFP-PURO lentivirus. Female New Zealand rabbits (n = 24) were divided randomly into control A and B groups and experimental C and D groups to establish...

Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage

Background Human amniotic epithelial cells (hAECs) are attractive candidates for regenerative medical therapy, with the potential to replace deficient cells and improve functional recovery after injury. Previous studies have demonstrated that transplantation of hAECs effectively alleviate chemotherapy-induced ovarian damage via inhibiting granulose cells apoptosis in animal...

Laser-modified titanium surfaces enhance the osteogenic differentiation of human mesenchymal stem cells

Background Titanium surfaces have been modified by various approaches with the aim of improving the stimulation of osseointegration. Laser beam (Yb-YAG) treatment is a controllable and flexible approach to modifying surfaces. It creates a complex surface topography with micro and nano-scaled patterns, and an oxide layer that can improve the osseointegration of implants...

Two sides of the same coin? Unraveling subtle differences between human embryonic and induced pluripotent stem cells by Raman spectroscopy

Background Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are...

MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction

Background Our study aim was to evaluate the therapeutic efficacy and mechanisms of miR-133-overexpressing mesenchymal stem cells (MSCs) on acute myocardial infarction. Methods Rat MSCs were isolated and purified by whole bone marrow adherent culturing. After transfection with the agomir or antagomir of miR-133, MSCs were collected for assay of cell vitality, apoptosis, and cell...

Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats

Background Intrauterine adhesion (IUA) is a common uterine cavity disease which can be caused by mechanical damage that may eventually lead to infertility and pregnancy abnormalities. Since the effect of therapeutic drugs appears disappointing, cell therapy has emerged as an alternative choice for endometrium regeneration. The aim of this study is to investigate whether the...

The similarities between smDCs and regDCs in alleviating the immune injury caused by transplantation of hepatocytes differentiated from ESCs

Background This study aimed to investigate the tolerogenic mechanisms induced by semimature dendritic cells (smDCs) and regulatory dendritic cells (regDCs) after transplantation of hepatocytes differentiated from mouse embryonic stem cells (ESCs) and to confirm the low immunogenicity of hepatocytes differentiated from ESCs. Methods Green fluorescent protein-labeled ESCs collected...

Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration

Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to...

Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice

Background Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs) from radiation injury is an important goal in the development of medical countermeasure agents (MCM). We recently identified thioredoxin (TXN) as a novel...

Autologous adipose-derived regenerative cell therapy modulates development of hypertrophic scarring in a red Duroc porcine model

Background Effective prevention and treatment of hypertrophic scars (HTSs), a common consequence of deep-partial thickness injury, remain a significant clinical challenge. Previous studies from our group have shown that autologous adipose-derived regenerative cells (ADRCs) represent a promising approach to improve wound healing and, thereby, impact HTS development. The purpose of...

Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation

Background Cell source plays a key role in cell-based cartilage repair and regeneration. Recent efforts in cell coculture have attempted to combine the advantages and negate the drawbacks of the constituent cell types. The aim of this study was to evaluate the chondrogenic outcome of articular chondrocytes (ACs) and infrapatellar fat pad (IPFP)-derived mesenchymal stem cells...

Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study

Background Adipose tissue-derived mesenchymal stem cells (AT-MSCs) offer potential as a therapeutic option for chronic discogenic low back pain (LBP) because of their immunomodulatory functions and capacity for cartilage differentiation. The goal of this study was to assess the safety and tolerability of a single intradiscal implantation of combined AT-MSCs and hyaluronic acid...

Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model

BackgroundWe aimed to generate a bioengineered multi-lamellar human corneal stroma tissue in vitro by differentiating periodontal ligament stem cells (PDLSCs) towards keratocytes on an aligned silk membrane.MethodsHuman PDLSCs were isolated and identified. The neuropeptide substance P (SP) was added in keratocyte differentiation medium (KDM) to evaluate its effect on keratocyte...

Therapeutic effects of bone marrow-derived mononuclear cells from healthy or silicotic donors on recipient silicosis mice

Background Administration of bone marrow mononuclear cells (BMMCs) modulates lung inflammation and fibrosis in experimental silicosis. However, no studies have evaluated whether silicosis affects the efficacy of autologous BMMCs treatment. We hypothesized that BMMCs obtained from healthy or silicotic mice may improve lung function, but they might affect the inflammatory and...

TGFβ3 recruits endogenous mesenchymal stem cells to initiate bone regeneration

Background The recruitment of a sufficient number of endogenous mesenchymal stem cells (MSCs) is the first stage of in-situ tissue regeneration. Transforming growth factor beta-3 (TGFβ3) could recruit stem or progenitor cells and endothelial cells to participate in tissue regeneration. However, the mechanism of TGFβ3 recruiting MSCs toward bone regeneration has remained obscure...

Human amnion cells reverse acute and chronic pulmonary damage in experimental neonatal lung injury

Background Despite advances in neonatal care, bronchopulmonary dysplasia (BPD) remains a significant contributor to infant mortality and morbidity. While human amnion epithelial cells (hAECs) have shown promise in small and large animal models of BPD, there is scarce information on long-term benefit and clinically relevant questions surrounding administration strategy remain...

Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model

Background Limbal epithelial stem cells (LESCs) play important roles in corneal epithelial homeostasis and regeneration, and damage to the limbus will lead to limbal stem cell deficiency (LSCD), with conjunctivalization and even visual impairment. Cultured LESCs have been used for ocular surface reconstruction, and silk fibroin (SF) membranes have shown potential as a substrate...

Regenerative potential of primary adult human neural stem cells on micropatterned bio-implants boosts motor recovery

Background The adult brain is unable to regenerate itself sufficiently after large injuries. Therefore, hopes rely on therapies using neural stem cell or biomaterial transplantation to sustain brain reconstruction. The aim of the present study was to evaluate the improvement in sensorimotor recovery brought about by human primary adult neural stem cells (hNSCs) in combination...

miR-200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo

Background Endometriosis is a common, benign, and estrogen-dependent disease characterized by pelvic pain and infertility. To date, the pathogenesis of endometriosis remains unclear. Recent studies have demonstrated that noncoding RNAs, including microRNAs and long noncoding RNAs, play important roles in the development of endometriosis. Methods Expression profiling of miRNAs in...

Adjudin-preconditioned neural stem cells enhance neuroprotection after ischemia reperfusion in mice

Background Transplantation of neural stem cells (NSCs) has been proposed as a promising therapeutic strategy for the treatment of ischemia/reperfusion (I/R)-induced brain injury. However, existing evidence has also challenged this therapy on its limitations, such as the difficulty for stem cells to survive after transplantation due to the unfavorable microenvironment in the...

Caffeic acid phenethyl ester promotes haematopoietic stem/progenitor cell homing and engraftment

Background Several studies have suggested that caffeic acid phenethyl ester (CAPE) can induce the expression of hypoxia inducible factor-1α (HIF-1α) protein. We determined whether CAPE has a novel function in improving the homing and engraftment of haematopoietic stem/progenitor cells (HSPCs) by regulating HIF-1α gene expression in the bone marrow (BM) niche. Methods For survival...