We present an improved model and theory for time-causal and time-recursive spatio-temporal receptive fields, obtained by a combination of Gaussian receptive fields over the spatial domain and first-order integrators or equivalently truncated exponential filters coupled in cascade over the temporal domain. Compared to previous spatio-temporal scale-space formulations in terms of ...

Using the Kullback–Leibler divergence we provide a simple statistical measure which uses only the covariance matrix of a given set to verify whether the set is an ellipsoid. Similar measure is provided for verification of circles and balls. The new measure is easily computable, intuitive, and can be applied to higher dimensional data. Experiments have been performed to illustrate ...

One of the approaches in diffusion tensor imaging is to consider a Riemannian metric given by the inverse diffusion tensor. Such a metric is used for geodesic tractography and connectivity analysis in white matter. We propose a metric tensor given by the adjugate rather than the previously proposed inverse diffusion tensor. The adjugate metric can also be employed in the sharpening ...

The performance of matching and object recognition methods based on interest points depends on both the properties of the underlying interest points and the choice of associated image descriptors. This paper demonstrates advantages of using generalized scale-space interest point detectors in this context for selecting a sparse set of points for computing image descriptors for ...

We propose a novel skeleton-based approach to gait recognition using our Skeleton Variance Image. The core of our approach consists of employing the screened Poisson equation to construct a family of smooth distance functions associated with a given shape. The screened Poisson distance function approximation nicely absorbs and is relatively stable to shape boundary perturbations ...

We develop a framework for polynomial regression on Riemannian manifolds. Unlike recently developed spline models on Riemannian manifolds, Riemannian polynomials offer the ability to model parametric polynomials of all integer orders, odd and even. An intrinsic adjoint method is employed to compute variations of the matching functional, and polynomial regression is accomplished ...

To model association fields that underly perceptional organization (gestalt) in psychophysics we consider the problem P curve of minimizing \(\int _{0}^{\ell} \sqrt{\xi^{2} +\kappa^{2}(s)} {\rm d}s \) for a planar curve having fixed initial and final positions and directions. Here κ(s) is the curvature of the curve with free total length ℓ. This problem comes from a model of ...

This paper describes a novel method for shape representation and robust image segmentation. The proposed method combines two well known methodologies, namely, statistical shape models and active contours implemented in level set framework. The shape detection is achieved by maximizing a posterior function that consists of a prior shape probability model and image likelihood ...

In this paper we introduce an integrative approach towards color texture classification and recognition using a supervised learning framework. Our approach is based on Generalized Learning Vector Quantization (GLVQ), extended by an adaptive distance measure, which is defined in the Fourier domain, and adaptive filter kernels based on Gabor filters. We evaluate the proposed ...

This special issue comprises thirteen recent and relevant works in different aspects of the computer analysis of images and patterns. We cover important topics like stereo image processing, image and shape representation, color texture classification, parallel systems and membrane computing, face recognition, pedestrian classification, estimation of photometry and analysis of ...

We consider morphological and linear scale spaces on the space ℝ3⋊S 2 of 3D positions and orientations naturally embedded in the group SE(3) of 3D rigid body movements. The general motivation for these (convection-)diffusions and erosions is to obtain crossing-preserving fiber enhancement on probability densities defined on the space of positions and orientations. The strength of ...

In this paper we present a spatially-adaptive method for image reconstruction that is based on the concept of statistical multiresolution estimation as introduced in Frick et al. (Electron. J. Stat. 6:231–268, 2012). It constitutes a variational regularization technique that uses an ℓ ∞-type distance measure as data-fidelity combined with a convex cost functional. The resulting ...

Scale-invariant interest points have found several highly successful applications in computer vision, in particular for image-based matching and recognition. This paper presents a theoretical analysis of the scale selection properties of a generalized framework for detecting interest points from scale-space features presented in Lindeberg (Int. J. Comput. Vis. 2010, under revision) ...