npj Computational Materials

http://www.nature.com/npjcompumats

List of Papers (Total 36)

Entropy contributions to phase stability in binary random solid solutions

High entropy alloys contain multiple elements in large proportions that make them prone to phase separation. These alloys generally have shallow enthalpy of mixing which makes the entropy contributions of similar magnitude. As a result, the phase stability of these alloys is equally dependent on enthalpy and entropy of mixing and understanding the individual contribution of...

Online search tool for graphical patterns in electronic band structures

Many functional materials can be characterized by a specific pattern in their electronic band structure, for example, Dirac materials, characterized by a linear crossing of bands; topological insulators, characterized by a “Mexican hat” pattern or an effectively free electron gas, characterized by a parabolic dispersion. To find material realizations of these features, manual...

Unsupervised phase mapping of X-ray diffraction data by nonnegative matrix factorization integrated with custom clustering

Analyzing large X-ray diffraction (XRD) datasets is a key step in high-throughput mapping of the compositional phase diagrams of combinatorial materials libraries. Optimizing and automating this task can help accelerate the process of discovery of materials with novel and desirable properties. Here, we report a new method for pattern analysis and phase extraction of XRD datasets...

Multiobjective genetic training and uncertainty quantification of reactive force fields

The ReaxFF reactive force-field approach has significantly extended the applicability of reactive molecular dynamics simulations to a wide range of material properties and processes. ReaxFF parameters are commonly trained to fit a predefined set of quantum-mechanical data, but it remains uncertain how accurately the quantities of interest are described when applied to complex...

Evaluation of thermodynamic equations of state across chemistry and structure in the materials project

Thermodynamic equations of state (EOS) for crystalline solids describe material behaviors under changes in pressure, volume, entropy and temperature, making them fundamental to scientific research in a wide range of fields including geophysics, energy storage and development of novel materials. Despite over a century of theoretical development and experimental testing of energy...

Machine learning hydrogen adsorption on nanoclusters through structural descriptors

Catalytic activity of the hydrogen evolution reaction on nanoclusters depends on diverse adsorption site structures. Machine learning reduces the cost for modelling those sites with the aid of descriptors. We analysed the performance of state-of-the-art structural descriptors Smooth Overlap of Atomic Positions, Many-Body Tensor Representation and Atom-Centered Symmetry Functions...

Automated defect analysis in electron microscopic images

Electron microscopy and defect analysis are a cornerstone of materials science, as they offer detailed insights on the microstructure and performance of a wide range of materials and material systems. Building a robust and flexible platform for automated defect recognition and classification in electron microscopy will result in the completion of analysis orders of magnitude...

Fine-grained optimization method for crystal structure prediction

Crystal structure prediction based on first-principles calculations is often achieved by applying relaxation to randomly generated initial structures. Relaxing a structure requires multiple optimization steps. It is time consuming to fully relax all the initial structures, but it is difficult to figure out which initial structure leads to the optimal solution in advance. In this...

Machine learning modeling of superconducting critical temperature

Superconductivity has been the focus of enormous research effort since its discovery more than a century ago. Yet, some features of this unique phenomenon remain poorly understood; prime among these is the connection between superconductivity and chemical/structural properties of materials. To bridge the gap, several machine learning schemes are developed herein to model the...

Learning local, quenched disorder in plasticity and other crackling noise phenomena

When far from equilibrium, many-body systems display behavior that strongly depends on the initial conditions. A characteristic such example is the phenomenon of plasticity of crystalline and amorphous materials that strongly depends on the material history. In plasticity modeling, the history is captured by a quenched, local and disordered flow stress distribution. While it is...

Reconstructing phase diagrams from local measurements via Gaussian processes: mapping the temperature-composition space to confidence

We show the ability to map the phase diagram of a relaxor-ferroelectric system as a function of temperature and composition through local hysteresis curve acquisition, with the voltage spectroscopy data being used as a proxy for the (unknown) microscopic state or thermodynamic parameters of materials. Given the discrete nature of the measurement points, we use Gaussian processes...

Design of high-strength refractory complex solid-solution alloys

Nickel-based superalloys and near-equiatomic high-entropy alloys containing molybdenum are known for higher temperature strength and corrosion resistance. Yet, complex solid-solution alloys offer a huge design space to tune for optimal properties at slightly reduced entropy. For refractory Mo-W-Ta-Ti-Zr, we showcase KKR electronic structure methods via the coherent-potential...

Efficient first-principles prediction of solid stability: Towards chemical accuracy

The question of material stability is of fundamental importance to any analysis of system properties in condensed matter physics and materials science. The ability to evaluate chemical stability, i.e., whether a stoichiometry will persist in some chemical environment, and structure selection, i.e. what crystal structure a stoichiometry will adopt, is critical to the prediction of...

Displacement Current in Domain Walls of Bismuth Ferrite

In 1861, Maxwell conceived the idea of the displacement current, which then made laws of electrodynamics more complete and also resulted in the realization of devices exploiting such displacement current. Interestingly, it is presently unknown if such displacement current can result in large intrinsic ac current in ferroic systems possessing domains, despite the flurry of recent...

Machine learning in materials informatics: recent applications and prospects

Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct...

First-principles screening of structural properties of intermetallic compounds on martensitic transformation

Martensitic transformation with good structural compatibility between parent and martensitic phases are required for shape memory alloys (SMAs) in terms of functional stability. In this study, first-principles-based materials screening is systematically performed to investigate the intermetallic compounds with the martensitic phases by focusing on energetic and dynamical...

First-principles prediction of high-entropy-alloy stability

High entropy alloys (HEAs) are multicomponent compounds whose high configurational entropy allows them to solidify into a single phase, with a simple crystal lattice structure. Some HEAs exhibit desirable properties, such as high specific strength, ductility, and corrosion resistance, while challenging the scientist to make confident predictions in the face of multiple competing...

Inhomogeneous strain-induced half-metallicity in bent zigzag graphene nanoribbons

Realization of half-metallicity in low dimensional materials is a fundamental challenge for nano spintronics, which is a critical component for next-generation information technology. Using the method of generalized Bloch theorem, we show that an in-plane bending can induce inhomogeneous strains, which in turn lead to spin-splitting in zigzag graphene nanoribbons and results in...

Empirical interatomic potentials optimized for phonon properties

Molecular dynamics simulations have been extensively used to study phonons and gain insight, but direct comparisons to experimental data are often difficult, due to a lack of accurate empirical interatomic potentials for different systems. As a result, this issue has become a major barrier to realizing the promise associated with advanced atomistic-level modeling techniques. Here...

In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future

Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary...

Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy

Deformation twinning from grain boundaries is often observed in face-centered cubic metals with low stacking fault energy. One of the possible factors that contribute to twinning origination from grain boundaries is the intergranular interactions during deformation. Nonetheless, the influence of mechanical interaction among grains on twin evolution has not been fully understood...

Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives

Magnetoelectric composites and heterostructures integrate magnetic and dielectric materials to produce new functionalities, e.g., magnetoelectric responses that are absent in each of the constituent materials but emerge through the coupling between magnetic order in the magnetic material and electric order in the dielectric material. The magnetoelectric coupling in these...

Facile measurement of single-crystal elastic constants from polycrystalline samples

Elastic constants are among the most fundamental properties of materials. Simulations of microstructural evolution and constitutive/micro-mechanistic modeling of materials properties require elastic constants that are predominately measured from single crystals that are labor intensive to grow. A facile technique is developed to measure elastic constants from polycrystalline...

A phase field model for snow crystal growth in three dimensions

Snowflake growth provides a fascinating example of spontaneous pattern formation in nature. Attempts to understand this phenomenon have led to important insights in non-equilibrium dynamics observed in various active scientific fields, ranging from pattern formation in physical and chemical systems, to self-assembly problems in biology. Yet, very few models currently succeed in...