Climate Dynamics

http://link.springer.com/journal/382

List of Papers (Total 706)

Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States

Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation ...

The link between Tibetan Plateau monsoon and Indian summer precipitation: a linear diagnostic perspective

The thermal forcing of the Tibetan Plateau (TP) is analyzed to investigate the formation and variability of Tibetan Plateau Summer Monsoon (TPSM), which affects the climates of the surrounding regions, in particular the Indian summer monsoon precipitation. Dynamic composites and statistical analyses indicate that the Indian summer monsoon precipitation is less/greater than normal ...

Evaluation of CMIP5 models over the northern North Atlantic in the context of forthcoming paleoclimatic reconstructions

We evaluated 11 coupled climate model simulations regarding the spatial structures of sea-surface temperature (SST) variability in the North Atlantic, during the second half of the twentieth century. The subset of models includes CCSM4, CSIRO, CanESM and MPI-ESM, participating in the fifth phase of the Climate Model Intercomparison Project. The evaluation was performed to determine ...

Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies

The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with ...

Multiple and spin off initiation of atmospheric convectively coupled Kelvin waves

A novel atmospheric convectively coupled Kelvin wave trajectories database, derived from Tropical Rainfall Measuring Mission precipitation data, is used to investigate initiation of sequential Kelvin wave events. Based on the analysis of beginnings of trajectories from years 1998–2012 it is shown that sequential event initiations can be divided into two distinct categories: ...

The role of the North Atlantic Oscillation in European climate projections

This study highlights the expected range of projected winter air temperature and precipitation trends over the next 30–50 years due to unpredictable fluctuations of the North Atlantic Oscillation (NAO) superimposed upon forced anthropogenic climate change. The findings are based on a 40-member initial-condition ensemble of simulations covering the period 1920–2100 conducted with ...

Simulating North American mesoscale convective systems with a convection-permitting climate model

Deep convection is a key process in the climate system and the main source of precipitation in the tropics, subtropics, and mid-latitudes during summer. Furthermore, it is related to high impact weather causing floods, hail, tornadoes, landslides, and other hazards. State-of-the-art climate models have to parameterize deep convection due to their coarse grid spacing. These ...

A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia?

We assess the ability of the DePreSys3 prediction system to predict the summer (JJAS) surface-air temperature over North East Asia. DePreSys3 is based on a high resolution ocean–atmosphere coupled climate prediction system (~ 60 km in the atmosphere and ~ 25 km in the ocean), which is full-field initialized from 1960 to 2014 (26 start-dates). We find skill in predicting surface-air ...

Extreme precipitation linked to temperature over Japan: current evaluation and projected changes with multi-model ensemble downscaling

Recent studies have revealed that an increase in surface air temperature elevates the intensity of extreme precipitation associated with the increase of water vapor in the atmosphere, according to the principle of the Clausius–Clapeyron (CC) relationship. In this study, (1) we have verified the dependence of extreme precipitation intensity on temperature (CC relationship) under ...

Dynamical downscaling with the fifth-generation Canadian regional climate model (CRCM5) over the CORDEX Arctic domain: effect of large-scale spectral nudging and of empirical correction of sea-surface temperature

As part of the CORDEX project, the fifth-generation Canadian Regional Climate Model (CRCM5) is used over the Arctic for climate simulations driven by reanalyses and by the MPI-ESM-MR coupled global climate model (CGCM) under the RCP8.5 scenario. The CRCM5 shows adequate skills capturing general features of mean sea level pressure (MSLP) for all seasons. Evaluating 2-m temperature ...

Can tree-ring density data reflect summer temperature extremes and associated circulation patterns over Fennoscandia?

Tree-ring maximum latewood density (MXD) records from Fennoscandia have been widely used to infer regional- and hemispheric-scale mean temperature variability. Here, we explore if MXD records can also be used to infer past variability of summer temperature extremes across Fennoscandia. The first principal component (PC1) based on 34 MXD chronologies in Fennoscandia explains 50% of ...

Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?

Different strengths and types of radiative forcings cause variations in the climate sensitivities and efficacies. To relate these changes to their physical origin, this study tests whether a feedback analysis is a suitable approach. For this end, we apply the partial radiative perturbation method. Combining the forward and backward calculation turns out to be indispensable to ...

Uncertainty in detecting trend: a new criterion and its applications to global SST

In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of multi-scale internal variation. One can thus use a specific period in a much longer record to arbitrarily determine the sign of long-term trend, which is statistically significant, in regional SST. This could lead to a controversial ...

Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific

Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2–5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global ...

Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model

A necessary step before assessing the performance of decadal predictions is the evaluation of the processes that bring memory to the climate system, both in climate models and observations. These mechanisms are particularly relevant in the North Atlantic, where the ocean circulation, related to both the Subpolar Gyre and the Meridional Overturning Circulation (AMOC), is thought to ...

Bjerknes compensation in the Bergen Climate Model

The meridional transport of heat is a critical component of the Earth’s climate system. If the total heat transported by the climate system is approximately constant, then the anomalies of heat transported by the atmosphere and ocean should be approximately equal and opposite, a scenario now called Bjerknes compensation. This has previously been found in two coupled climate models, ...

Analysis of the variability of the North Atlantic eddy-driven jet stream in CMIP5

The North Atlantic eddy-driven jet is a dominant feature of extratropical climate and its variability is associated with the large-scale changes in the surface climate of midlatitudes. Variability of this jet is analysed in a set of General Circulation Models (GCMs) from the Coupled Model Inter-comparison Project phase-5 (CMIP5) over the North Atlantic region. The CMIP5 simulations ...

GEOS-5 seasonal forecast system

Ensembles of numerical forecasts based on perturbed initial conditions have long been used to improve estimates of both weather and climate forecasts. The Goddard Earth Observing System (GEOS) Atmosphere–Ocean General Circulation Model, Version 5 (GEOS-5 AOGCM) Seasonal-to-Interannual Forecast System has been used routinely by the GMAO since 2008, the current version since 2012. A ...

A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part II: intraseasonal variability

The causes of subseasonal precipitation variability in China are investigated using observations and reanalysis data for extended winter (November–April) and summer (May–October) seasons from 1982 to 2007. For each season, the three dominant regions of coherent intraseasonal variability are identified with Empirical Orthogonal Teleconnection (EOT) analysis. While previous studies ...

Causes of the large warm bias in the Angola–Benguela Frontal Zone in the Norwegian Earth System Model

We have investigated the causes of the sea surface temperature (SST) bias in the Angola–Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over ...

An extreme negative Indian Ocean Dipole event in 2016: dynamics and predictability

During 2016 boreal summer and fall, a strong negative Indian Ocean Dipole (IOD) event occurred, which led to large climate impacts such as the drought over East Africa. In this study, efforts are made to understand the dynamics of this IOD event and to evaluate real-time IOD predictions from current operational seasonal forecast systems. We show that both the wind-evaporation-SST ...

Pacific-North American teleconnection and North Pacific Oscillation: historical simulation and future projection in CMIP5 models

Based on reanalysis datasets and as many as 35 CMIP5 models, this study evaluates the capability of climate models to simulate the spatiotemporal features of Pacific-North American teleconnection (PNA) and North Pacific Oscillation (NPO) in the twentieth century wintertime, and further investigates their responses to greenhouse warming in the twenty-first century. Analysis reveals ...

Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective

Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius–Clapeyron (CC) rate of 6–7%/°C–1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures ...

A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part I: Interannual variability

Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. To improve its understanding and prediction, many studies have associated precipitation variability with particular causes for specific seasons and regions. Here, a consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to 1951–2007 ...