Protein & Cell

http://link.springer.com/journal/13238

List of Papers (Total 705)

Microtubule-associated deacetylase HDAC6 promotes angiogenesis by regulating cell migration in an EB1-dependent manner

Angiogenesis, a process by which the preexisting blood vasculature gives rise to new capillary vessels, is associated with a variety of physiologic and pathologic conditions. However, the molecular mechanism underlying this important process remains poorly understood. Here we show that histone deacetylase 6 (HDAC6), a microtubule-associated enzyme critical for cell motility...

Small GTPases and cilia

Small GTPases are key molecular switches that bind and hydrolyze GTP in diverse membrane- and cytoskeleton-related cellular processes. Recently, mounting evidences have highlighted the role of various small GTPases, including the members in Arf/Arl, Rab, and Ran subfamilies, in cilia formation and function. Once overlooked as an evolutionary vestige, the primary cilium has...

Germ cell sex prior to meiosis in the rainbow trout

Germ cells make two major decisions when they move from an indeterminate state to their final stage of gamete production. One decision is sexual commitment for sperm or egg production, and the other is to maintain mitotic division or entry into meiosis. It is unclear whether the two decisions are made as a single event or separate events, because there has been no evidence for...

Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy

Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLDU). To examine protein aggregation and cytotoxicity, we expressed...

Reprogrammed mouse astrocytes retain a “memory” of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts

Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that...

Apolipoproteins and amyloid fibril formation in atherosclerosis

Amyloid fibrils arise from the aggregation of misfolded proteins into highly-ordered structures. The accumulation of these fibrils along with some non-fibrillar constituents within amyloid plaques is associated with the pathogenesis of several human degenerative diseases. A number of plasma apolipoproteins, including apolipoprotein (apo) A-I, apoA-II, apoC-II and apoE are...

High affinity soluble ILT2 receptor: a potent inhibitor of CD8+ T cell activation

Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical...

Polycomb repressive complex 2 in embryonic stem cells: an overview

Polycomb Group Proteins (PcG) are a family of epigenetic regulators responsible for the repression of an array of genes important in development and cell fate specification. PcG proteins complex to form two types of epigenetic regulators: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). Although the mechanisms regulating PRC2 recruitment and activity in mammals remain poorly...

Structure and function of interleukin-17 family cytokines

The recently identified interleukin-17 (IL-17) cytokines family, which comprises six members in mammals (IL-17A-F), plays essential roles in the host immunity against infectious diseases and chronic inflammatory diseases. The three-dimensional structures containing IL-17A or IL-17F have become available and revealed the unique structural features of IL-17s as well as their...

Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement...

Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis

The emergence of total drug-resistant tuberculosis (TDRTB) has made the discovery of new therapies for tuberculosis urgent. The cytoplasmic enzymes of peptidoglycan biosynthesis have generated renewed interest as attractive targets for the development of new anti-mycobacterials. One of the cytoplasmic enzymes, uridine diphosphate (UDP)-MurNAc-tripeptide ligase (MurE), catalyses...

Dynamics of the higher-order structure of chromatin

Eukaryotic DNA is hierarchically packaged into chromatin to fit inside the nucleus. Dynamics of the chromatin structure plays a critical role in transcriptional regulation and other biological processes that involve DNA, such as DNA replication and DNA repair. Many factors, including histone variants, histone modification, DNA methylation and the binding of non-histone...

A study of miRNAs targets prediction and experimental validation

microRNAs (miRNAs) are 20–24 nucleotide (nt) RNAs that regulate eukaryotic gene expression post-transcriptionally by the degradation or translational inhibition of their target messenger RNAs (mRNAs). To identify miRNA target genes will help a lot by understanding their biological functions. Sophisticated computational approaches for miRNA target prediction, and effective...

Influence of glycosylation and oligomerization of vaccinia virus complement control protein on level and pattern of functional activity and immunogenicity

Vaccinia virus complement control protein (VCP) is one of the proteins encoded by vaccinia virus to modulate the host inflammatory response. VCP modulates the inflammatory response and protects viral habitat by inhibiting the classical and the alternative pathways of complement activation. The extended structure of VCP, mobility between its sequential domains, charge distribution...

Phosphorylation of Rictor at Thr1135 impairs the Rictor/Cullin-1 complex to ubiquitinate SGK1

The Rictor/mTOR complex plays a pivotal role in a variety of cellular functions including cellular metabolism, cell proliferation and survival by phosphorylating Akt at Ser473 to fully activate the Akt kinase. However, its upstream regulatory pathways as well as whether it has additional function(s) remain largely unknown. We recently reported that Rictor contains a novel...

Human gut microbiome: the second genome of human body

The human body is actually a super-organism that is composed of 10 times more microbial cells than our body cells. Metagenomic study of the human microbiome has demonstrated that there are 3.3 million unique genes in human gut, 150 times more genes than our own genome, and the bacterial diversity analysis showed that about 1000 bacterial species are living in our gut and a...