Theory in Biosciences

http://link.springer.com/journal/12064

List of Papers (Total 37)

Relations and dependencies between morphological characters

In biological classification, a character is a property of a taxon that can distinguish it from other taxa. Characters are not independent, and the relations between characters can arise from structural constraints, developmental pathways or functional constraints. That has lead to famous controversies in the history of biology. In addition, a character as a tool of data analysis ...

A simple game-theoretic model for upstream fish migration

A simple game-theoretic model for upstream fish migration, which is a key element in life history of diadromous fishes, is proposed. Foundation of the model is a minimization problem on the cost of migration with the swimming speed and school size as the variables to be simultaneously optimized. Finding the optimizer ultimately reduces to solving a self-consistency equation without ...

Knowledge

We investigate the basic principles of structural knowledge. Structural knowledge underlies cognition, and it organizes, selects and assigns meaning to information. It is the result of evolutionary, cultural and developmental processes. Because of its own constraints, it needs to discover and exploit regularities and thereby achieve a complexity reduction.

Analytic derivation of bacterial growth laws from a simple model of intracellular chemical dynamics

Experiments have found that the growth rate and certain other macroscopic properties of bacterial cells in steady-state cultures depend upon the medium in a surprisingly simple manner; these dependencies are referred to as ‘growth laws’. Here we construct a dynamical model of interacting intracellular populations to understand some of the growth laws. The model has only three ...

Approximating the stabilization of cellular metabolism by compartmentalization

Biochemical regulation in compartmentalized metabolic networks is highly complex and non-intuitive. This is particularly true for cells of higher plants showing one of the most compartmentalized cellular structures across all kingdoms of life. The interpretation and testable hypothesis generation from experimental data on such complex systems is a challenging step in biological ...

How should we measure proportionality on relative gene expression data?

Correlation is ubiquitously used in gene expression analysis although its validity as an objective criterion is often questionable. If no normalization reflecting the original mRNA counts in the cells is available, correlation between genes becomes spurious. Yet the need for normalization can be bypassed using a relative analysis approach called log-ratio analysis. This approach ...

Extensive fitness and human cooperation

Evolution depends on the fitness of organisms, the expected rate of reproducing. Directly getting offspring is the most basic form of fitness, but fitness can also be increased indirectly by helping genetically related individuals (such as kin) to increase their fitness. The combined effect is known as inclusive fitness. Here it is argued that a further elaboration of fitness has ...

Evolution, reproduction and definition of life

Synthetic theory of evolution is a superior integrative biological theory. Therefore, there is nothing surprising about the fact that multiple attempts of defining life are based on this theory. One of them even has a status of NASA’s working definition. According to this definition, ‘life is a self-sustained chemical system capable of undergoing Darwinian evolution’ Luisi (Orig ...

Measurement of statistical evidence on an absolute scale following thermodynamic principles

Statistical analysis is used throughout biomedical research and elsewhere to assess strength of evidence. We have previously argued that typical outcome statistics (including p values and maximum likelihood ratios) have poor measure-theoretic properties: they can erroneously indicate decreasing evidence as data supporting an hypothesis accumulate; and they are not amenable to ...

An introduction to the mathematical structure of the Wright–Fisher model of population genetics

In this paper, we develop the mathematical structure of the Wright–Fisher model for evolution of the relative frequencies of two alleles at a diploid locus under random genetic drift in a population of fixed size in its simplest form, that is, without mutation or selection. We establish a new concept of a global solution for the diffusion approximation (Fokker–Planck equation), ...

Guiding the self-organization of random Boolean networks

Random Boolean networks (RBNs) are models of genetic regulatory networks. It is useful to describe RBNs as self-organizing systems to study how changes in the nodes and connections affect the global network dynamics. This article reviews eight different methods for guiding the self-organization of RBNs. In particular, the article is focused on guiding RBNs toward the critical ...

Measuring quantities using oscillators and pulse generators

This article presents properties of the clock–counter model with a periodic generator employed as the source of regularly emitted pulses. The pacemaker and accumulator mechanisms are often considered in research in neurobiology and cognitive science: neurons or their groups serve as oscillators, and the number of spikes emitted while a stimulus lasts becomes an estimate of the ...

Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinella chromatophora

The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active and deeply integrated cyanobacterial endosymbionts acquired ~60 million years ago. Recent genomic analyses of P. chromatophora have revealed the loss of many essential genes from the endosymbiont’s genome, and have identified more than 30 genes that have been transferred to the host cell’s nucleus ...

Computing with bacterial constituents, cells and populations: from bioputing to bactoputing

The relevance of biological materials and processes to computing—alias bioputing—has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical ...

Modelling survival and allele complementation in the evolution of genomes with polymorphic loci

We have simulated the evolution of sexually reproducing populations composed of individuals represented by diploid genomes. A series of eight bits formed an allele occupying one of 128 loci of one haploid genome (chromosome). The environment required a specific activity of each locus, this being the sum of the activities of both alleles located at the corresponding loci on two ...