Photonic Sensors

http://link.springer.com/journal/13320

List of Papers (Total 356)

Mellin Transform-Based Correction Method for Linear Scale Inconsistency of Intrusion Events Identification in OFPS

For the problem that the linear scale of intrusion signals in the optical fiber pre-warning system (OFPS) is inconsistent, this paper presents a method to correct the scale. Firstly, the intrusion signals are intercepted, and an aggregate of the segments with equal length is obtained. Then, the Mellin transform (MT) is applied to convert them into the same scale. The spectral...

Strong Influence of Temperature and Vacuum on the Photoluminescence of In0.3Ga0.7As Buried and Surface Quantum Dots

The strong influences of temperature and vacuum on the optical properties of In0.3Ga0.7As surface quantum dots (SQDs) are systematically investigated by photoluminescence (PL) measurements. For comparison, optical properties of buried quantum dots (BQDs) are also measured. The line-width, peak wavelength, and lifetime of SQDs are significantly different from the BQDs with the...

Calibration Method to Eliminate Zeroth Order Effect in Lateral Shearing Interferometry

In this paper, a calibration method is proposed which eliminates the zeroth order effect in lateral shearing interferometry. An analytical expression of the calibration error function is deduced, and the relationship between the phase-restoration error and calibration error is established. The analytical results show that the phase-restoration error introduced by the calibration...

Laser Spot Center Detection and Comparison Test

High efficiency and precision of the pot center detection are the foundations of avionics instrument navigation and optics measurement basis for many applications. It has noticeable impact on overall system performance. Among them, laser spot detection is very important in the optical measurement technology. In order to improve the low accuracy of the spot center position, the...

Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left...

SNR Improvement of QEPAS System by Preamplifier Circuit Optimization and Frequency Locked Technique

Preamplifier circuit noise is of great importance in quartz enhanced photoacoustic spectroscopy (QEPAS) system. In this paper, several noise sources are evaluated and discussed in detail. Based on the noise characteristics, the corresponding noise reduction method is proposed. In addition, a frequency locked technique is introduced to further optimize the QEPAS system noise and...

Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral...

Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3...

Analytical Characterization on Pulse Propagation in a Semiconductor Optical Amplifier Based on Homotopy Analysis Method

Starting from the basic equations describing the evolution of the carriers and photons inside a semiconductor optical amplifier (SOA), the equation governing pulse propagation in the SOA is derived. By employing homotopy analysis method (HAM), a series solution for the output pulse by the SOA is obtained, which can effectively characterize the temporal features of the nonlinear...

Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the...

Sensor-Based Inspection of the Formation Accuracy in Ultra-Precision Grinding (UPG) of Aspheric Surface Considering the Chatter Vibration

This paper proposes an experimental approach for monitoring and inspection of the formation accuracy in ultra-precision grinding (UPG) with respect to the chatter vibration. Two factors related to the grinding progress, the grinding speed of grinding wheel and spindle, and the oil pressure of the hydrostatic bearing are taken into account to determining the accuracy. In the...

Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM...

Research on FBG-Based CFRP Structural Damage Identification Using BP Neural Network

A damage identification system of carbon fiber reinforced plastics (CFRP) structures is investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. FBG sensors are applied to construct the sensing network to detect the structural dynamic response signals generated by active actuation. The damage identification model is built based on the BP...

Center of gravity estimation using a reaction board instrumented with fiber Bragg gratings

The purpose of the present work is to construct a reaction board based on fiber Bragg gratings (FBGs) that could be used for estimation of the 2D coordinates of the projection of center of gravity (CG) of an object. The apparatus is consisted of a rigid equilateral triangular board mounted on three supports at the vertices, two of which have cantilevers instrumented with FBGs...

A Monocular Vision Measurement System of Three-Degree-of-Freedom Air-Bearing Test-Bed Based on FCCSP

A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP...

An energy ratio feature extraction method for optical fiber vibration signal

The intrusion events in the optical fiber pre-warning system (OFPS) are divided into two types which are harmful intrusion event and harmless interference event. At present, the signal feature extraction methods of these two types of events are usually designed from the view of the time domain. However, the differences of time-domain characteristics for different harmful...

Influence of annealing on X-ray radiation sensing properties of TiO2 thin film

A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural...

One novel type of miniaturization FBG rotation angle sensor with high measurement precision and temperature self-compensation

In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle...

ANSYS-based birefringence property analysis of side-hole fiber induced by pressure and temperature

In this paper, we theoretically investigate the influences of pressure and temperature on the birefringence property of side-hole fibers with different shapes of holes using the finite element analysis method. A physical mechanism of the birefringence of the side-hole fiber is discussed with the presence of different external pressures and temperatures. The strain field...

Performance improvement of Raman distributed temperature system by using noise suppression

In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that...

Study on influence of crack on the blade status using FBGs

The status detection for rotating parts is difficult since the sensor is influenced by the rotation in the inflammable, explosive, and strong magnetic environment. Based on the fiber Bragg grating sensing technology, this paper studies the influence of the natural frequency and deformation of a rotor blade affected by the size of crack in the blade. Test results show that the...

Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method

In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining...

Characterization of polycrystalline nickel cobaltite nanostructures prepared by DC plasma magnetron co-sputtering for gas sensing applications

In this work, a gas sensor is fabricated from polycrystalline nickel cobaltite nano films deposited on transparent substrates by closed-field unbalanced dual-magnetrons (CFUBDM) co-sputtering technique. Two targets of nickel and cobalt are mounted on the cathode of discharge system and co-sputtered by direct current (DC) argon discharge plasma in presence of oxygen as a reactive...

Detection of gain enhancement in laser-induced fluorescence of rhodamine B lasing dye by silicon dioxide nanostructures-coated cavity

In this work, nanostructured silicon dioxide films are deposited by closed-field unbalanced direct-current (DC) reactive magnetron sputtering technique on two sides of quartz cells containing rhodamine B dye dissolved in ethanol with 10‒5 M concentration as a random gain medium. The preparation conditions are optimized to prepare highly pure SiO2 nanostructures with a minimum...

Interference-based optical measurement of fluidic flow in a hollow-core fiber

In this study, we present speed and displacement measurements of micro-fluid in a hollow-core optical fiber, where an optical interference signal is created by two guided beams reflected at a fixed facet and a moving fluid end. By counting the number of intensity oscillations of the signal, the movement of the fluid end is successfully traced with high accuracy. Furthermore, we...