AMB Express

http://link.springer.com/journal/13568

List of Papers (Total 742)

Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16

Carbonic anhydrase (CA) enzymes catalyze the interconversion of CO2 and bicarbonate. These enzymes play important roles in cellular metabolism, CO2 transport, ion transport, and internal pH regulation. Understanding the metabolic role of CAs in the chemolithoautotropic bacterium Ralstonia eutropha is important for the development of high performance fermentation processes based...

Characterization of Chromobacterium violaceum pigment through a hyperspectral imaging system

In this paper, a comprehensive spatio-spectral and temporal analysis for Chromobacterium violaceum colonies is reported. A hyperspectral imaging (HSI) system is used to recover the spectral signatures of pigment production in a non-homogeneous media with high spectral resolution and high sensitivity in vivo, without destructing the sample. This non-contact sensing technique opens...

Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions

We produced organic acids, including lactate and succinate, directly from soluble starch under anaerobic conditions using high cell-density cultures of Corynebacterium glutamicum displaying α-amylase (AmyA) from Streptococcus bovis 148 on the cell surface. Notably, reactions performed under anaerobic conditions at 35 and 40°C, which are higher than the optimal growth temperature...

Enhanced synthesis of 5-hydroxy-l-tryptophan through tetrahydropterin regeneration

5-Hydroxy-l-tryptophan (5-HTP) is a naturally occurring aromatic amino acid present in the seeds of the African plant Griffonia simplicifolia. Although 5-HTP has therapeutic effects in various symptoms, efficient method of producing 5-HTP has not been established. In this study, we developed a novel cofactor regeneration process to achieve enhanced synthesis of 5-HTP by using...

Overexpression of a modified 6-phosphofructo-1-kinase results in an increased itaconic acid productivity in Aspergillus niger

A modified 6-phosphofructo-1-kinase was expressed in a citrate producing Aspergillus niger strain in combination with cis-aconitate decarboxylase from Aspergillus terreus to study the effect on the production of itaconic acid. The modified pfkA gene was also expressed in combination with the itaconic acid biosynthetic cluster from A. terreus, which consists of cis- aconitate...

Comparative proteomic analysis reveals mechanistic insights into Pseudomonas putida F1 growth on benzoate and citrate

Pseudomonas species are capable to proliferate under diverse environmental conditions and thus have a significant bioremediation potential. To enhance our understanding of their metabolic versatility, this study explores the changes in the proteome and physiology of Pseudomonas putida F1 resulting from its growth on benzoate, a moderate toxic compound that can be catabolized, and...

A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves

The mangroves are among the most productive and biologically important environments. The possible presence of cellulolytic enzymes and microorganisms useful for biomass degradation as well as taxonomic and functional aspects of two Brazilian mangroves were evaluated using cultivation and metagenomic approaches. From a total of 296 microorganisms with visual differences in colony...

Utilization of oleo-chemical industry by-products for biosurfactant production

Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer...

Evaluation of culture media for the production of secondary metabolites in a natural products screening program

Variation in the growing environment can have significant impacts on the quantity and diversity of fungal secondary metabolites. In the industrial setting, optimization of growing conditions can lead to significantly increased production of a compound of interest. Such optimization becomes challenging in a drug-discovery screening situation, as the ideal conditions for one...

Enhancing cellulase and hemicellulase production by genetic modification of the carbon catabolite repressor gene, creA, in Acremonium cellulolyticus

Acremonium cellulolyticus is one of several fungi that offer promise as an alternative to Trichoderma reesei for use in industrial cellulase production. However, the mechanism of cellulase production has not been studied at the molecular level because adequate genetic engineering tools for use in A. cellulolyticus are lacking. In the present study, we developed a gene disruption...

Biochemical and kinetic characterisation of a novel xylooligosaccharide-upregulated GH43 β-d-xylosidase/α-l-arabinofuranosidase (BXA43) from the probiotic Bifidobacterium animalis subsp. lactis BB-12

The Bifidobacterium animalis subsp. lactis BB-12 gene BIF_00092, assigned to encode a β-d-xylosidase (BXA43) of glycoside hydrolase family 43 (GH43), was cloned with a C-terminal His-tag and expressed in Escherichia coli. BXA43 was purified to homogeneity from the cell lysate and found to be a dual-specificity exo-hydrolase active on para-nitrophenyl-β-d-xylopyranoside (p NPX...

Fixation of CO2 in Clostridium cellulovorans analyzed by 13C-isotopomer-based target metabolomics

Clostridium cellulovorans has been one of promising microorganisms to use biomass efficiently; however the basic metabolic pathways have not been completely known. We carried out 13C-isotopomer-based target metabolome analysis, or carbohydrate conversion process analysis, for more profound understanding of metabolic pathways of the bacterium. Our findings that pyruvate...

Quantitative evaluation of E. coli F4 and Salmonella Typhimurium binding capacity of yeast derivatives

The target of the present study was to quantify the capacity of different commercially available yeast derivatives to bind E. coli F4 and Salmonella Typhimurium. In addition, a correlation analysis was performed for the obtained binding numbers and the mannan-, glucan- and protein contents of the products, respectively. In a subsequent experiment, different yeast strains were...

Bacterial versus fungal laccase: potential for micropollutant degradation

Relatively high concentrations of micropollutants in municipal wastewater treatment plant (WWTP) effluents underscore the necessity to develop additional treatment steps prior to discharge of treated wastewater. Microorganisms that produce unspecific oxidative enzymes such as laccases are a potential means to improve biodegradation of these compounds. Four strains of the...

Direct cadaverine production from cellobiose using β-glucosidase displaying Escherichia coli

In this study, we demonstrate the one-step production of cadaverine (1,5-diaminopentane) from cellobiose using an Escherichia coli strain displaying β-glucosidase (BGL) on its cell surface. L-lysine decarboxylase (CadA) derived from E. coli and BGL from Thermobifida fusca YX (Tfu0937) fused to the anchor protein Blc from E. coli were co-expressed using E. coli as a host. The...

Construction of a simple biocatalyst using psychrophilic bacterial cells and its application for efficient 3-hydroxypropionaldehyde production from glycerol

Most whole cell biocatalysts have some problems with yields and productivities because of various metabolites produced as byproducts and limitations of substrate uptake. We propose a psychrophile-based simple biocatalyst for efficient bio-production using mesophilic enzymes expressed in psychrophilic Shewanella livingstonensis Ac10 cells whose basic metabolism was inactivated by...

An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses

Bacterial contamination is known as a major cause of the reduction in ethanol yield during bioethanol production by Saccharomyces cerevisiae. Acetate is an effective agent for the prevention of bacterial contamination, but it negatively affects the fermentation ability of S. cerevisiae. We have proposed that the combined use of organic acids including acetate and lactate and...

Optimisation of engineered Escherichia coli biofilms for enzymatic biosynthesis of l-halotryptophans

Engineered biofilms comprising a single recombinant species have demonstrated remarkable activity as novel biocatalysts for a range of applications. In this work, we focused on the biotransformation of 5-haloindole into 5-halotryptophan, a pharmaceutical intermediate, using Escherichia coli expressing a recombinant tryptophan synthase enzyme encoded by plasmid pSTB7. To optimise...

Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations

Yarrowia lipolytica is an attractive host for sustainable bioprocesses due to its ability to utilize a variety of carbon substrates and convert them to a range of different product types (including lipids, organic acids and polyols) under specific conditions. Despite an increasing number of applications for this yeast, relatively few studies have focused on uptake and metabolism...

Photocatalytic bacterial inactivation by TiO2-coated surfaces

The aim of this study was the evaluation of the photoactivated antibacterial activity of titanium dioxide (TiO2)-coated surfaces. Bacterial inactivation was evaluated using TiO2-coated Petri dishes. The experimental conditions optimized with Petri dishes were used to test the antibacterial effect of TiO2-coated ceramic tiles. The best antibacterial effect with Petri dishes was...

Growth profile of Carboxydothermus hydrogenoformans on pyruvate

Carboxydothermus hydrogenoformans is a thermophilic anaerobic strain most widely known for its ability to produce hydrogen (H2) when grown on carbon monoxide (CO). Although relatively well studied, growth characterization on pyruvate has never been assessed. The present work fully characterizes growth of the bacterium on pyruvate as a sole carbon source. C. hydrogenoformans...

Increase methylmercury accumulation in Arabidopsis thaliana expressing bacterial broad-spectrum mercury transporter MerE

The bacterial merE gene derived from the Tn21 mer operon encodes a broad-spectrum mercury transporter that governs the transport of methylmercury and mercuric ions across bacterial cytoplasmic membranes, and this gene is a potential molecular tool for improving the efficiency of methylmercury phytoremediation. A transgenic Arabidopsis engineered to express MerE was constructed...

Antimicrobial activity of novel nanostructured Cu-SiO2 coatings prepared by chemical vapour deposition against hospital related pathogens

There is increasing recognition that the healthcare environment acts as an important reservoir for transmission of healthcare acquired infections (HCAI). One method of reducing environmental contamination would be use of antimicrobial materials. The antimicrobial activity of thin silica-copper films prepared by chemical vapour deposition was evaluated against standard strains of...

Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans

In the present study, two phyto-compounds phenyl aldehyde (cinnamaldehyde) and propanoid (eugenol) were selected to explore their modes of action against Candida albicans. Electron microscopy, flow cytometry and spectroscopic assays were employed to determine the targets of these compounds. Treatment of C. albicans (CA04) with sub-MICs of cinnamaldehyde (50 μg/mL) and eugenol...

Comparative evaluation of rumen metagenome community using qPCR and MG-RAST

Microbial profiling of metagenome communities have been studied extensively using MG-RAST and other related metagenome annotation databases. Although, database based taxonomic profiling provides snapshots of the metagenome architecture, their reliability needs to be validated through more accurate methods. Here, we performed qPCR based absolute quantitation of selected rumen...