Nucleic Acids Research

https://academic.oup.com/nar

List of Papers (Total 4,932)

Oxidative stress induces degradation of mitochondrial DNA

Mitochondrial DNA (mtDNA) is located in close proximity of the respiratory chains, which are the main cellular source of reactive oxygen species (ROS). ROS can induce oxidative base lesions in mtDNA and are believed to be an important cause of the mtDNA mutations, which accumulate with aging and in diseased states. However, recent studies indicate that cumulative levels of base...

The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing

Proteins of the GW182 family interact with Argonaute proteins and are required for miRNA-mediated gene silencing. These proteins contain two structural domains, an ubiquitin-associated (UBA) domain and an RNA recognition motif (RRM), embedded in regions predicted to be unstructured. The structure of the RRM of Drosophila melanogaster GW182 reveals that this domain adopts an RRM...

Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells

The envelope glycoprotein of human immunodeficiency virus (HIV) consists of an exterior glycoprotein (gp120) and a trans-membrane domain (gp41) and has an important role in viral entry into cells. HIV-1 entry has been validated as a clinically relevant anti-viral strategy for drug discovery. In the present work, several 2′-F substituted RNA aptamers that bind to the HIV-1BaL...

A role for hydrophobicity in a Diels–Alder reaction catalyzed by pyridyl-modified RNA

New classes of RNA enzymes or ribozymes have been obtained by in vitro evolution and selection of RNA molecules. Incorporation of modified nucleotides into the RNA sequence has been proposed to enhance function. DA22 is a modified RNA containing 5-(4-pyridylmethyl) carboxamide uridines, which has been selected for its ability to promote a Diels–Alder cycloaddition reaction. Here...

Proofreading exonuclease activity of human DNA polymerase δ and its effects on lesion-bypass DNA synthesis

Replicative DNA polymerases possess 3′ → 5′ exonuclease activity to reduce misincorporation of incorrect nucleotides by proofreading during replication. To examine if this proofreading activity modulates DNA synthesis of damaged templates, we constructed a series of recombinant human DNA polymerase δ (Pol δ) in which one or two of the three conserved Asp residues in the...

The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity

MAML1 is a transcriptional coregulator originally identified as a Notch coactivator. MAML1 is also reported to interact with other coregulator proteins, such as CDK8 and p300, to modulate the activity of Notch. We, and others, previously showed that MAML1 recruits p300 to Notch-regulated genes through direct interactions with the DNA–CSL–Notch complex and p300. MAML1 interacts...

Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage

Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription...

Distinctive sequence patterns in metazoan and yeast nucleosomes: Implications for linker histone binding to AT-rich and methylated DNA

Linker histones (LHs) bind to the DNA entry/exit points of nucleosomes and demonstrate preference for AT-rich DNA, although the recognized sequence patterns remain unknown. These patterns are expected to be more pronounced in metazoan nucleosomes with abundant LHs, compared to yeast nucleosomes with few LHs. To test this hypothesis, we compared the nucleosome core particle (NCP...

Model-based redesign of global transcription regulation

Synthetic biology aims to the design or redesign of biological systems. In particular, one possible goal could be the rewiring of the transcription regulation network by exchanging the endogenous promoters. To achieve this objective, we have adapted current methods to the inference of a model based on ordinary differential equations that is able to predict the network response...

Specific recognition of a multiply phosphorylated motif in the DNA repair scaffold XRCC1 by the FHA domain of human PNK

Short-patch repair of DNA single-strand breaks and gaps (SSB) is coordinated by XRCC1, a scaffold protein that recruits the DNA polymerase and DNA ligase required for filling and sealing the damaged strand. XRCC1 can also recruit end-processing enzymes, such as PNK (polynucleotide kinase 3′-phosphatase), Aprataxin and APLF (aprataxin/PNK-like factor), which ensure the...

Allegro: Analyzing expression and sequence in concert to discover regulatory programs

A major goal of system biology is the characterization of transcription factors and microRNAs (miRNAs) and the transcriptional programs they regulate. We present Allegro, a method for de-novo discovery of cis -regulatory transcriptional programs through joint analysis of genome-wide expression data and promoter or 3′ UTR sequences. The algorithm uses a novel log-likelihood-based...

How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape

The HIV-1 TAR RNA represents a well-known paradigm to study the role of dynamics and conformational change in RNA function. This regulatory RNA changes conformation in response to binding of Tat protein and of a variety of peptidic and small molecule ligands, indicating that its conformational flexibility and intrinsic dynamics play important roles in molecular recognition. We...

Influence of substituent modifications on the binding of 2-amino-1,8-naphthyridines to cytosine opposite an AP site in DNA duplexes: thermodynamic characterization

Here, we report on a significant effect of substitutions on the binding affinity of a series of 2-amino-1,8-naphthyridines, i.e., 2-amino-1,8-naphthyridine (AND), 2-amino-7-methyl-1,8-naphthyridine (AMND), 2-amino-5,7-dimethyl-1,8-naphthyridine (ADMND) and 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND), all of which can bind to cytosine opposite an AP site in DNA duplexes...