Nucleic Acids Research

https://academic.oup.com/nar

List of Papers (Total 4,932)

Turnover of aberrant pre-40S pre-ribosomal particles is initiated by a novel endonucleolytic decay pathway

Ribosome biogenesis requires more than 200 trans-acting factors to achieve the correct production of the two mature ribosomal subunits. Here, we have identified Efg1 as a novel, nucleolar ribosome biogenesis factor in Saccharomyces cerevisiae that is directly linked to the surveillance of pre-40S particles. Depletion of Efg1 impairs early pre-rRNA processing, leading to a strong...

Multiple RPAs make WRN syndrome protein a superhelicase

RPA is known to stimulate the helicase activity of Werner syndrome protein (WRN), but the exact stimulation mechanism is not understood. We use single-molecule FRET and magnetic tweezers to investigate the helicase activity of WRN and its stimulation by RPA. We show that WRN alone is a weak helicase which repetitively unwind just a few tens of base pairs, but that binding of...

Visualizing structure-mediated interactions in supercoiled DNA molecules

We directly visualize the topology-mediated interactions between an unwinding site on a supercoiled DNA plasmid and a specific probe molecule designed to bind to this site, as a function of DNA supercoiling and temperature. The visualization relies on containing the DNA molecules within an enclosed array of glass nanopits using the Convex Lens-induced Confinement (CLiC) imaging...

RNA-splicing factor SART3 regulates translesion DNA synthesis

Translesion DNA synthesis (TLS) is one mode of DNA damage tolerance that uses specialized DNA polymerases to replicate damaged DNA. DNA polymerase η (Polη) is well known to facilitate TLS across ultraviolet (UV) irradiation and mutations in POLH are implicated in skin carcinogenesis. However, the basis for recruitment of Polη to stalled replication forks is not completely...

DNA template sequence control of bacterial RNA polymerase escape from the promoter

Promoter escape involves breaking of the favourable contacts between RNA polymerase (RNAP) and the promoter to allow transition to an elongation complex. The sequence of DNA template that is transcribed during promoter escape (ITS; Initially Transcribed Sequence) can affect promoter escape by mechanisms that are not yet fully understood. We employed a highly parallel strategy...

Stabilization of the methyl-CpG binding protein ZBTB38 by the deubiquitinase USP9X limits the occurrence and toxicity of oxidative stress in human cells

Reactive oxygen species (ROS) are a byproduct of cell metabolism, and can also arise from environmental sources, such as toxins or radiation. Depending on dose and context, ROS have both beneficial and deleterious roles in mammalian development and disease, therefore it is crucial to understand how these molecules are generated, sensed, and detoxified. The question of how...

Dissecting the sources of gene expression variation in a pan-cancer analysis identifies novel regulatory mutations

Although the catalog of cancer-associated mutations in protein-coding regions is nearly complete for all major cancer types, an assessment of regulatory changes in cancer genomes and their clinical significance remain largely preliminary. Adopting bottom-up approach, we quantify the effects of different sources of gene expression variation in a cohort of 3899 samples from 10...

Dehydrated DNA in B-form: ionic liquids in rescue

The functional B-conformation of DNA succumbs to the A-form at low water activity. Methods for room temperature DNA storage that rely upon ‘anhydrobiosis’, thus, often encounter the loss of DNA activity due to the B→A-DNA transition. Here, we show that ionic liquids, an emerging class of green solvents, can induce conformational transitions in DNA and even rescue the dehydrated...

The arginine methyltransferase CARM1 represses p300•ACT•CREMτ activity and is required for spermiogenesis

CARM1 is a protein arginine methyltransferase (PRMT) that has been firmly implicated in transcriptional regulation. However, the molecular mechanisms by which CARM1 orchestrates transcriptional regulation are not fully understood, especially in a tissue-specific context. We found that Carm1 is highly expressed in the mouse testis and localizes to the nucleus in spermatids...

Reconstructing spatial organizations of chromosomes through manifold learning

Decoding the spatial organizations of chromosomes has crucial implications for studying eukaryotic gene regulation. Recently, chromosomal conformation capture based technologies, such as Hi-C, have been widely used to uncover the interaction frequencies of genomic loci in a high-throughput and genome-wide manner and provide new insights into the folding of three-dimensional (3D...

RNentropy: an entropy-based tool for the detection of significant variation of gene expression across multiple RNA-Seq experiments

RNA sequencing (RNA-Seq) has become the experimental standard in transcriptome studies. While most of the bioinformatic pipelines for the analysis of RNA-Seq data and the identification of significant changes in transcript abundance are based on the comparison of two conditions, it is common practice to perform several experiments in parallel (e.g. from different individuals...

Pursuing origins of (poly)ethylene glycol-induced G-quadruplex structural modulations

Molecular crowding conditions provided by high concentration of cosolutes are utilized for characterization of biomolecules in cell-mimicking environment and development of drug-delivery systems. In this context, (poly)ethylene glycols are often used for studying non-canonical DNA structures termed G-quadruplexes, which came into focus by emerging structural biology findings and...

Human La binds mRNAs through contacts to the poly(A) tail

In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3’OH motif is well characterized, but the mechanism of La binding to coding...

Translation initiation of alphavirus mRNA reveals new insights into the topology of the 48S initiation complex

The topology and dynamics of the scanning ribosomal 43S pre-initiation complex (PIC) bound to mRNA and initiation factors (eIFs) are probably the least understood aspects of translation initiation in eukaryotes. Recently, we described a trapping mechanism in alphavirus that stalls the PIC during scanning of viral mRNA. Using this model, we were able to snapshot for the first time...

A new class of antibacterials, the imidazopyrazinones, reveal structural transitions involved in DNA gyrase poisoning and mechanisms of resistance

Imidazopyrazinones (IPYs) are a new class of compounds that target bacterial topoisomerases as a basis for their antibacterial activity. We have characterized the mechanism of these compounds through structural/mechanistic studies showing they bind and stabilize a cleavage complex between DNA gyrase and DNA (‘poisoning’) in an analogous fashion to fluoroquinolones, but without...

Protein plasticity driven by disorder and collapse governs the heterogeneous binding of CytR to DNA

The amplitude of thermodynamic fluctuations in biological macromolecules determines their conformational behavior, dimensions, nature of phase transitions and effectively their specificity and affinity, thus contributing to fine-tuned molecular recognition. Unique among large-scale conformational changes in proteins are temperature-induced collapse transitions in intrinsically...

Quantifying the stability of oxidatively damaged DNA by single-molecule DNA stretching

One of the most common DNA lesions is created when reactive oxygen alters guanine. 8-oxo-guanine may bind in the anti-conformation with an opposing cytosine or in the syn-conformation with an opposing adenine paired by transversion, and both conformations may alter DNA stability. Here we use optical tweezers to measure the stability of DNA hairpins containing 8-oxoguanine (8oxoG...

Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state

Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we...

Human CHD1 is required for early DNA-damage signaling and is uniquely regulated by its N terminus

CHD1 is a conserved chromatin remodeling enzyme required for development and linked to prostate cancer in adults, yet its role in human cells is poorly understood. Here, we show that targeted disruption of the CHD1 gene in human cells leads to a defect in early double-strand break (DSB) repair via homologous recombination (HR), resulting in hypersensitivity to ionizing radiation...

PERK/eIF2α signaling inhibits HIF-induced gene expression during the unfolded protein response via YB1-dependent regulation of HIF1α translation

HIF1α (hypoxia inducible factor 1α) is the central regulator of the cellular response to low oxygen and its activity is deregulated in multiple human pathologies. Consequently, given the importance of HIF signaling in disease, there is considerable interest in developing strategies to modulate HIF1α activity and down-stream signaling events. In the present study we find that...

Role for first zinc finger of WT1 in DNA sequence specificity: Denys–Drash syndrome-associated WT1 mutant in ZF1 enhances affinity for a subset of WT1 binding sites

Wilms tumor protein (WT1) is a Cys2-His2 zinc-finger transcription factor vital for embryonic development of the genitourinary system. The protein contains a C-terminal DNA binding domain with four tandem zinc-fingers (ZF1–4). An alternative splicing of Wt1 can add three additional amino acids—lysine (K), threonine (T) and serine (S)—between ZF3 and ZF4. In the −KTS isoform, ZF2...

FoldX accurate structural protein–DNA binding prediction using PADA1 (Protein Assisted DNA Assembly 1)

The speed at which new genomes are being sequenced highlights the need for genome-wide methods capable of predicting protein–DNA interactions. Here, we present PADA1, a generic algorithm that accurately models structural complexes and predicts the DNA-binding regions of resolved protein structures. PADA1 relies on a library of protein and double-stranded DNA fragment pairs...

Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families

The wealth of the combinatorics of nucleotide base pairs enables RNA molecules to assemble into sophisticated interaction networks, which are used to create complex 3D substructures. These interaction networks are essential to shape the 3D architecture of the molecule, and also to provide the key elements to carry molecular functions such as protein or ligand binding. They are...

Extensive and systematic rewiring of histone post-translational modifications in cancer model systems

Histone post-translational modifications (PTMs) generate a complex combinatorial code that regulates gene expression and nuclear functions, and whose deregulation has been documented in different types of cancers. Therefore, the availability of relevant culture models that can be manipulated and that retain the epigenetic features of the tissue of origin is absolutely crucial for...