Nucleic Acids Research

https://academic.oup.com/nar

List of Papers (Total 5,758)

PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data

The increasing availability of multi-omic platforms poses new challenges to data analysis. Joint visualization of multi-omics data is instrumental in better understanding interconnections across molecular layers and in fully utilizing the multi-omic resources available to make biological discoveries. We present here PaintOmics 3, a web-based resource for the integrated...

MetExplore: collaborative edition and exploration of metabolic networks

Metabolism of an organism is composed of hundreds to thousands of interconnected biochemical reactions responding to environmental or genetic constraints. This metabolic network provides a rich knowledge to contextualize omics data and to elaborate hypotheses on metabolic modulations. Nevertheless, performing this kind of integrative analysis is challenging for end users with not...

BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins

Interest in secondary metabolites such as RiPPs (ribosomally synthesized and posttranslationally modified peptides) is increasing worldwide. To facilitate the research in this field we have updated our mining web server. BAGEL4 is faster than its predecessor and is now fully independent from ORF-calling. Gene clusters of interest are discovered using the core-peptide database and...

oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements

oriTfinder is a web server that facilitates the rapid identification of the origin of transfer site (oriT) of a conjugative plasmid or chromosome-borne integrative and conjugative element. The utilized back-end database oriTDB was built upon more than one thousand known oriT regions of bacterial mobile genetic elements (MGEs) as well as the known MGE-encoding relaxases and type...

HMMER web server: 2018 update

The HMMER webserver [http://www.ebi.ac.uk/Tools/hmmer] is a free-to-use service which provides fast searches against widely used sequence databases and profile hidden Markov model (HMM) libraries using the HMMER software suite (http://hmmer.org). The results of a sequence search may be summarized in a number of ways, allowing users to view and filter the significant hits by...

CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses

The recent accumulation of gene expression data in the form of RNA sequencing creates unprecedented opportunities to study gene regulation and function. Furthermore, comparative analysis of the expression data from multiple species can elucidate which functional gene modules are conserved across species, allowing the study of the evolution of these modules. However, performing...

Kinact: a computational approach for predicting activating missense mutations in protein kinases

Protein phosphorylation is tightly regulated due to its vital role in many cellular processes. While gain of function mutations leading to constitutive activation of protein kinases are known to be driver events of many cancers, the identification of these mutations has proven challenging. Here we present Kinact, a novel machine learning approach for predicting kinase activating...

PhytoNet: comparative co-expression network analyses across phytoplankton and land plants

Phytoplankton consists of autotrophic, photosynthesizing microorganisms that are a crucial component of freshwater and ocean ecosystems. However, despite being the major primary producers of organic compounds, accounting for half of the photosynthetic activity worldwide and serving as the entry point to the food chain, functions of most of the genes of the model phytoplankton...

The TubR–centromere complex adopts a double-ring segrosome structure in Type III partition systems

In prokaryotes, the centromere is a specialized segment of DNA that promotes the assembly of the segrosome upon binding of the Centromere Binding Protein (CBP). The segrosome structure exposes a specific surface for the interaction of the CBP with the motor protein that mediates DNA movement during cell division. Additionally, the CBP usually controls the transcriptional...

Regional conformational flexibility couples substrate specificity and scissile phosphate diester selectivity in human flap endonuclease 1

Human flap endonuclease-1 (hFEN1) catalyzes the divalent metal ion-dependent removal of single-stranded DNA protrusions known as flaps during DNA replication and repair. Substrate selectivity involves passage of the 5′-terminus/flap through the arch and recognition of a single nucleotide 3′-flap by the α2–α3 loop. Using NMR spectroscopy, we show that the solution conformation of...

PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes

Human tyrosyl-DNA phosphodiesterases (TDP) hydrolyze the phosphodiester bond between DNA and the catalytic tyrosine of Top1 to excise topoisomerase I cleavage complexes (Top1cc) that are trapped by camptothecin (CPT) and by genotoxic DNA alterations. Here we show that the protein arginine methyltransferase PRMT5 enhances the repair of Top1cc by direct binding to TDP1 and arginine...

The KDM4A/KDM4C/NF-κB and WDR5 epigenetic cascade regulates the activation of B cells

T follicular helper (Tfh) cell-derived signals promote activation and proliferation of antigen-primed B cells. It remains unclear whether epigenetic regulation is involved in the B cell responses to Tfh cell-derived signals. Here, we demonstrate that Tfh cell-mimicking signals induce the expression of histone demethylases KDM4A and KDM4C, and the concomitant global down...

Widespread enhancer activation via ERα mediates estrogen response in vivo during uterine development

Little is known regarding how steroid hormone exposures impact the epigenetic landscape in a living organism. Here, we took a global approach to understanding how exposure to the estrogenic chemical, diethylstilbestrol (DES), affects the neonatal mouse uterine epigenome. Integration of RNA- and ChIP-sequencing data demonstrated that ∼80% of DES-altered genes had higher H3K4me1...

Snapshots of a molecular swivel in action

Members of the serine family of site-specific recombinases exchange DNA strands via 180° rotation about a central protein-protein interface. Modeling of this process has been hampered by the lack of structures in more than one rotational state for any individual serine recombinase. Here we report crystal structures of the catalytic domains of four constitutively active mutants of...

Polyadenylation and degradation of structurally abnormal mitochondrial tRNAs in human cells

RNA 3′ polyadenylation is known to serve diverse purposes in biology, in particular, regulating mRNA stability and translation. Here we determined that, upon exposure to high levels of the intercalating agent ethidium bromide (EtBr), greater than those required to suppress mitochondrial transcription, mitochondrial tRNAs in human cells became polyadenylated. Relaxation of the...

The DNA damage response activates HPV16 late gene expression at the level of RNA processing

We show that the alkylating cancer drug melphalan activated the DNA damage response and induced human papillomavirus type 16 (HPV16) late gene expression in an ATM- and Chk1/2-dependent manner. Activation of HPV16 late gene expression included inhibition of the HPV16 early polyadenylation signal that resulted in read-through into the late region of HPV16. This was followed by...

Coupling of replisome movement with nucleosome dynamics can contribute to the parent–daughter information transfer

Positioning of nucleosomes along the genomic DNA is crucial for many cellular processes that include gene regulation and higher order packaging of chromatin. The question of how nucleosome-positioning information from a parent chromatin gets transferred to the daughter chromatin is highly intriguing. Accounting for experimentally known coupling between replisome movement and...

The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome

Chromatin remodelers are ATP-dependent motors that reorganize DNA packaging by disrupting canonical histone–DNA contacts within the nucleosome. Here, we show that the Chd1 chromatin remodeler stimulates DNA unwrapping from the edge of the nucleosome in a nucleotide-dependent and DNA sequence-sensitive fashion. Nucleosome binding, monitored by stopped flow, was complex and...

Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis

The MADS transcription factors (TF) constitute an ancient family of TF found in all eukaryotes that bind DNA as obligate dimers. Plants have dramatically expanded the functional diversity of the MADS family during evolution by adding protein–protein interaction domains to the core DNA-binding domain, allowing the formation of heterotetrameric complexes. Tetramerization of plant...

Mbd2-CP2c loop drives adult-type globin gene expression and definitive erythropoiesis

During hematopoiesis, red blood cells originate from the hematopoietic stem cell reservoir. Although the regulation of erythropoiesis and globin expression has been intensively investigated, the underlining mechanisms are not fully understood, including the interplay between transcription factors and epigenetic factors. Here, we uncover that the Mbd2-free NuRD chromatin...

High throughput discovery of protein variants using proteomics informed by transcriptomics

Proteomics informed by transcriptomics (PIT), in which proteomic MS/MS spectra are searched against open reading frames derived from de novo assembled transcripts, can reveal previously unknown translated genomic elements (TGEs). However, determining which TGEs are truly novel, which are variants of known proteins, and which are simply artefacts of poor sequence assembly, is...

Improving RNA nearest neighbor parameters for helices by going beyond the two-state model

RNA folding free energy change nearest neighbor parameters are widely used to predict folding stabilities of secondary structures. They were determined by linear regression to datasets of optical melting experiments on small model systems. Traditionally, the optical melting experiments are analyzed assuming a two-state model, i.e. a structure is either complete or denatured...

Determination of an effective scoring function for RNA–RNA interactions with a physics-based double-iterative method

RNA–RNA interactions play fundamental roles in gene and cell regulation. Therefore, accurate prediction of RNA–RNA interactions is critical to determine their complex structures and understand the molecular mechanism of the interactions. Here, we have developed a physics-based double-iterative strategy to determine the effective potentials for RNA–RNA interactions based on a...

Improving the value of public RNA-seq expression data by phenotype prediction

Publicly available genomic data are a valuable resource for studying normal human variation and disease, but these data are often not well labeled or annotated. The lack of phenotype information for public genomic data severely limits their utility for addressing targeted biological questions. We develop an in silico phenotyping approach for predicting critical missing annotation...

Expanding RNA binding specificity and affinity of engineered PUF domains

Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify...