For predual categories C and D we establish isomorphisms between opfibrations representing local varieties of languages in C, local pseudovarieties of D-monoids, and finitely generated profinite D-monoids. The global sections of these opfibrations are shown to correspond to varieties of languages in C, pseudovarieties of D-monoids, and profinite equational theories of D-monoids...

Recent decidability results on the satisfiability problem for temporal logics, in particular LTL, CTL* and ECTL*, with constraints over external structures like the integers with the order or infinite trees are surveyed in this paper.

This paper studies safety, progress, and non-zeno properties of Communicating Timed Automata (CTAs), which are timed automata (TA) extended with unbounded communication channels, and presents a procedure to build timed global specifications from systems of CTAs. We define safety and progress properties for CTAs by extending properties studied in communicating finite-state...

Compositional reasoning over probabilistic systems wrt. behavioral metric semantics requires the language operators to be uniformly continuous. We study which SOS specifications define uniformly continuous operators wrt. bisimulation metric semantics. We propose an expressive specification format that allows us to specify operators of any given modulus of continuity. Moreover, we...

This paper describes a synthesis algorithm tailored to the construction of choice-free Petri nets from finite persistent transition systems. With this goal in mind, a minimised set of simplified systems of linear inequalities is distilled from a general region-theoretic approach, leading to algorithmic improvements as well as to a partial characterisation of the class of...

In this paper, we introduce a novel rule for synthesis of reactive systems, applicable to systems made of n components which have each their own objectives. It is based on the notion of admissible strategies. We compare our novel rule with previous rules defined in the literature, and we show that contrary to the previous proposals, our rule define sets of solutions which are...

Kernel methods are an extremely popular set of techniques used for many important machine learning and data analysis applications. In addition to having good practical performance, these methods are supported by a well-developed theory. Kernel methods use an implicit mapping of the input data into a high dimensional feature space defined by a kernel function, i.e., a function...

We study resistance sparsification of graphs, in which the goal is to find a sparse subgraph (with reweighted edges) that approximately preserves the effective resistances between every pair of nodes. We show that every dense regular expander admits a (1+epsilon)-resistance sparsifier of size ~O(n/epsilon), and conjecture this bound holds for all graphs on n nodes. In comparison...

Modern software development and run-time environments, such as Java and the Microsoft .NET Common Language Runtime (CLR), have adopted a declarative form of access control. Permissions are granted to code providers, and during execution, the platform verifies compatibility between the permissions required by a security-sensitive operation and those granted to the executing code...

Rewriting is a formalism widely used in computer science and mathematical logic. When using rewriting as a programming or modeling paradigm, the rewrite rules describe the transformations one wants to operate and declarative rewriting strategies are used to control their application. The operational semantics of these strategies are generally accepted and approaches for analyzing...

Traditionally, the performance of algorithms is evaluated using worst-case analysis. For a number of problems, this type of analysis gives overly pessimistic results: Worst-case inputs are rather artificial and do not occur in practical applications. In this lecture we review some alternative analysis approaches leading to more realistic and robust performance evaluations...

The Fr�chet distance is a popular and widespread distance measure for point sequences and for curves. About two years ago, Agarwal et al [SIAM J. Comput. 2014] presented a new (mildly) subquadratic algorithm for the discrete version of the problem. This spawned a flurry of activity that has led to several new algorithms and lower bounds. In this paper, we study the...

The approximate nearest neighbor problem (epsilon-ANN) in Euclidean settings is a fundamental question, which has been addressed by two main approaches: Data-dependent space partitioning techniques perform well when the dimension is relatively low, but are affected by the curse of dimensionality. On the other hand, locality sensitive hashing has polynomial dependence in the...

We study the simplex method over polyhedra satisfying certain "discrete curvature" lower bounds, which enforce that the boundary always meets vertices at sharp angles. Motivated by linear programs with totally unimodular constraint matrices, recent results of Bonifas et al. (SOCG 2012), Brunsch and R�glin (ICALP 2013), and Eisenbrand and Vempala (2014) have improved our...

Consider the following modification to the shortest path query problem in polygonal domains: instead of finding shortest path to a query point q, we find the shortest path to any point that sees q. We present an interactive visualization applet visualizing these quickest visibility paths. The applet also visualizes quickest visibility maps, that is the subdivision of the domain...

We present two parallel repetition theorems for the entangled value of multi-player, one-round free games (games where the inputs come from a product distribution). Our first theorem shows that for a k-player free game G with entangled value val^*(G) = 1 - epsilon, the n-fold repetition of G has entangled value val^*(G^(\otimes n)) at most (1 - epsilon^(3/2))^(Omega(n/sk^4...

We exhibit families of 4-CNF formulas over n variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) d but require SOS proofs of size n^Omega(d) for values of d = d(n) from constant all the way up to n^delta for some universal constant delta. This shows that the n^O(d) running time obtained by using the Lasserre semidefinite programming...

We provide a general framework to remove short advice by formulating the following computational task for a function f: given two oracles at least one of which is honest (i.e. correctly computes f on all inputs) as well as an input, the task is to compute f on the input with the help of the oracles by a probabilistic polynomial-time machine, which we shall call a selector. We...

Most performance critical software is developed using very low-level techniques. We argue that this needs to change, and that generative programming is an effective avenue to enable the use of high-level languages and programming techniques in many such circumstances.

Recently, Fontaine has pointed out a connection between consistent query answering (CQA) and constraint satisfaction problems (CSP) [Fontaine, LICS 2013]. We investigate this connection more closely, identifying classes of CQA problems based on denial constraints and GAV constraints that correspond exactly to CSPs in the sense that a complexity classification of the CQA problems...

We show new results about the garden-hose model. Our main results include improved lower bounds based on non-deterministic communication complexity (leading to the previously unknown Theta(n) bounds for Inner Product mod 2 and Disjointness), as well as an O(n * log^3(n) upper bound for the Distributed Majority function (previously conjectured to have quadratic complexity). We...

Confluence is a key property of rewriting calculi that guarantees uniqueness of normal-forms when they exist. Metaconfluence is even more general, and guarantees confluence on open/meta terms, i.e. terms with holes, called metavariables that can be filled up with other (open/meta) terms. The difficulty to deal with open terms comes from the fact that the structure of metaterms is...

We consider the matroid median problem, wherein we are given a set of facilities with opening costs and a matroid on the facility-set, and clients with demands and connection costs, and we seek to open an independent set of facilities and assign clients to open facilities so as to minimize the sum of the facility-opening and client-connection costs. We give a simple 8...

Spencer's theorem asserts that, for any family of n subsets of ground set of size n, the elements of the ground set can be "colored" by the values +1 or -1 such that the sum of every set is O(sqrt(n)) in absolute value. All existing proofs of this result recursively construct "partial colorings", which assign +1 or -1 values to half of the ground set. We devise the first...

Frontmatter, Table of Contents, Preface, Conference Organization