Journal of NeuroEngineering and Rehabilitation

http://www.jneuroengrehab.com/

List of Papers (Total 959)

Characteristics of daily life gait in fall and non fall-prone stroke survivors and controls

Background Falls in stroke survivors can lead to serious injuries and medical costs. Fall risk in older adults can be predicted based on gait characteristics measured in daily life. Given the different gait patterns that stroke survivors exhibit it is unclear whether a similar fall-prediction model could be used in this group. Therefore the main purpose of this study was to examine ...

Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events

Background Steady-state visually evoked potentials (SSVEPs) can be elicited by repetitive stimuli and extracted in the frequency domain with satisfied performance. However, the temporal information of such stimulus is often ignored. In this study, we utilized repetitive visual stimuli with missing events to present a novel hybrid BCI paradigm based on SSVEP and omitted stimulus ...

Locomotor deficits in recently concussed athletes and matched controls during single and dual-task turning gait: preliminary results

Background There is growing evidence that mild traumatic brain injury (concussion) can affect locomotor characteristics for prolonged periods of time even when physical signs and symptoms are absent. While most locomotor deficits post-concussion have involved straight walking, turning gait has received little attention despite its pervasiveness in everyday locomotion and athletic ...

Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy

Background Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural (e.g. spasticity) and non-neural (e.g. contracture) components. The aim of this study was to simulate instrumented, clinical assessment of the hamstring muscles in CP using a conceptual model of contracture and spasticity, ...

Nerve excitation using an amplitude-modulated signal with kilohertz-frequency carrier and non-zero offset

Background Incorporating kilohertz-frequency signals in transcutaneous electrical stimulation has been proposed as a means to overcome the impedance of the skin, thereby reaching deeper nerves. In particular, a transdermal amplitude modulated signal (TAMS), composed of a 210 kHz non-zero offset carrier modulated by rectangular pulses, was introduced recently for the treatment of ...

A structured overview of trends and technologies used in dynamic hand orthoses

The development of dynamic hand orthoses is a fast-growing field of research and has resulted in many different devices. A large and diverse solution space is formed by the various mechatronic components which are used in these devices. They are the result of making complex design choices within the constraints imposed by the application, the environment and the patient’s ...

Tactile feedback for relief of deafferentation pain using virtual reality system: a pilot study

Background Previous studies have tried to relieve deafferentation pain (DP) by using virtual reality rehabilitation systems. However, the effectiveness of multimodal sensory feedback was not validated. The objective of this study is to relieve DP by neurorehabilitation using a virtual reality system with multimodal sensory feedback and to validate the efficacy of tactile feedback ...

Real-time estimation of FES-induced joint torque with evoked EMG: Application to spinal cord injured patients

Background Functional electrical stimulation (FES) is a neuroprosthetic technique for restoring lost motor function of spinal cord injured (SCI) patients and motor-impaired subjects by delivering short electrical pulses to their paralyzed muscles or motor nerves. FES induces action potentials respectively on muscles or nerves so that muscle activity can be characterized by the ...

A review of e-textiles in neurological rehabilitation: How close are we?

Textiles able to perform electronic functions are known as e-textiles, and are poised to revolutionise the manner in which rehabilitation and assistive technology is provided. With numerous reports in mainstream media of the possibilities and promise of e-textiles it is timely to review research work in this area related to neurological rehabilitation. This paper provides a review ...

Changes in muscle coordination patterns induced by exposure to a viscous force field

Background Robotic neurorehabilitation aims at promoting the recovery of lost function after neurological injury by leveraging strategies of motor learning. One important aspect of the rehabilitation process is the improvement of muscle coordination patterns, which can be drastically altered after stroke. However, it is not fully understood if and how robotic therapy can address ...

Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals

Background Collaborative robots are used in rehabilitation and are designed to interact with the client so as to provide the ability to assist walking therapeutically. One such device is the KineAssist which was designed to interact, either in a self-driven mode (SDM) or in an assist mode (AM), with neurologically-impaired individuals while they are walking on a treadmill surface. ...

Advances in selective activation of muscles for non-invasive motor neuroprostheses

Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via ...

A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses

Background The most common approach to studying dynamic balance during walking is by applying perturbations. Previous studies that investigated dynamic balance responses predominantly focused on applying perturbations in frontal plane while walking on treadmill. The goal of our work was to develop balance assessment robot (BAR) that can be used during overground walking and to ...

Impact on gait biomechanics of using an active variable impedance prosthetic knee

Background An above knee amputation can have a significant impact on gait, with substantial deviations in inter-leg symmetry, step length, hip exertion and upper body involvement even when using a current clinical standard of care prosthesis. These differences can produce gait that is less efficient and less comfortable, resulting in slower and shorter distance walking, ...

Instrumental indices for upper limb function assessment in stroke patients: a validation study

Background Robotic exoskeletons are increasingly being used in objective and quantitative assessment of upper limb (UL) movements. A set of instrumental indices computed during robot-assisted reaching tasks with the Armeo®Spring has been proven to assess UL functionality. The aim of this study was to test the construct validity of this indices-based UL assessment when used with ...

Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review

Powered robotic exoskeletons are a potential intervention for gait rehabilitation in stroke to enable repetitive walking practice to maximize neural recovery. As this is a relatively new technology for stroke, a scoping review can help guide current research and propose recommendations for advancing the research development. The aim of this scoping review was to map the current ...

Task-specific ankle robotics gait training after stroke: a randomized pilot study

Background An unsettled question in the use of robotics for post-stroke gait rehabilitation is whether task-specific locomotor training is more effective than targeting individual joint impairments to improve walking function. The paretic ankle is implicated in gait instability and fall risk, but is difficult to therapeutically isolate and refractory to recovery. We hypothesize ...

Enhancing transcranial direct current stimulation via motor imagery and kinesthetic illusion: crossing internal and external tools

Background Transcranial direct current stimulation is a safe technique which is now part of the therapeutic armamentarium for the neuromodulation of motor functions and cognitive operations. It is currently considered that tDCS is an intervention that might promote functional recovery after a lesion in the central nervous system, thus reducing long-term disability and associated ...

The Cybathlon promotes the development of assistive technology for people with physical disabilities

Background The Cybathlon is a new kind of championship, where people with physical disabilities compete against each other at tasks of daily life, with the aid of advanced assistive devices including robotic technologies. The first championship will take place at the Swiss Arena Kloten, Zurich, on 8 October 2016. The idea Six disciplines are part of the competition comprising races ...

Overground walking training with the i-Walker, a robotic servo-assistive device, enhances balance in patients with subacute stroke: a randomized controlled trial

Background Patients affected by mild stroke benefit more from physiological overground walking training than walking-like training performed in place using specific devices. The aim of the study was to evaluate the effects of overground robotic walking training performed with the servo-assistive robotic rollator (i-Walker) on walking, balance, gait stability and falls in a ...

Ambulatory assessment of walking balance after stroke using instrumented shoes

Background For optimal guidance of walking rehabilitation therapy of stroke patients in an in-home setting, a small and easy to use wearable system is needed. In this paper we present a new shoe-integrated system that quantifies walking balance during activities of daily living and is not restricted to a lab environment. Quantitative parameters were related to clinically assessed ...

A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking

Background Carrying load alters normal walking, imposes additional stress to the musculoskeletal system, and results in an increase in energy consumption and a consequent earlier onset of fatigue. This phenomenon is largely due to increased work requirements in lower extremity joints, in turn requiring higher muscle activation. The aim of this work was to assess the biomechanical ...

Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length

Background Gait is emerging as a powerful diagnostic and prognostic tool, and as a surrogate marker of disease progression for Parkinson’s disease (PD). Accelerometer-based body worn monitors (BWMs) facilitate the measurement of gait in clinical environments. Moreover they have the potential to provide a more accurate reflection of gait in the home during habitual behaviours. ...

Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke

Background Virtual and mixed reality systems have been suggested to promote motor recovery after stroke. Basing on the existing evidence on motor learning, we have developed a portable and low-cost mixed reality tabletop system that transforms a conventional table in a virtual environment for upper limb rehabilitation. The system allows intensive and customized training of a wide ...