Journal of NeuroEngineering and Rehabilitation

http://www.jneuroengrehab.com/

List of Papers (Total 972)

Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals

Background Collaborative robots are used in rehabilitation and are designed to interact with the client so as to provide the ability to assist walking therapeutically. One such device is the KineAssist which was designed to interact, either in a self-driven mode (SDM) or in an assist mode (AM), with neurologically-impaired individuals while they are walking on a treadmill surface...

Advances in selective activation of muscles for non-invasive motor neuroprostheses

Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via...

A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses

Background The most common approach to studying dynamic balance during walking is by applying perturbations. Previous studies that investigated dynamic balance responses predominantly focused on applying perturbations in frontal plane while walking on treadmill. The goal of our work was to develop balance assessment robot (BAR) that can be used during overground walking and to...

Impact on gait biomechanics of using an active variable impedance prosthetic knee

Background An above knee amputation can have a significant impact on gait, with substantial deviations in inter-leg symmetry, step length, hip exertion and upper body involvement even when using a current clinical standard of care prosthesis. These differences can produce gait that is less efficient and less comfortable, resulting in slower and shorter distance walking...

Instrumental indices for upper limb function assessment in stroke patients: a validation study

Background Robotic exoskeletons are increasingly being used in objective and quantitative assessment of upper limb (UL) movements. A set of instrumental indices computed during robot-assisted reaching tasks with the Armeo®Spring has been proven to assess UL functionality. The aim of this study was to test the construct validity of this indices-based UL assessment when used with...

Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review

Powered robotic exoskeletons are a potential intervention for gait rehabilitation in stroke to enable repetitive walking practice to maximize neural recovery. As this is a relatively new technology for stroke, a scoping review can help guide current research and propose recommendations for advancing the research development. The aim of this scoping review was to map the current...

Task-specific ankle robotics gait training after stroke: a randomized pilot study

Background An unsettled question in the use of robotics for post-stroke gait rehabilitation is whether task-specific locomotor training is more effective than targeting individual joint impairments to improve walking function. The paretic ankle is implicated in gait instability and fall risk, but is difficult to therapeutically isolate and refractory to recovery. We hypothesize...

Enhancing transcranial direct current stimulation via motor imagery and kinesthetic illusion: crossing internal and external tools

Background Transcranial direct current stimulation is a safe technique which is now part of the therapeutic armamentarium for the neuromodulation of motor functions and cognitive operations. It is currently considered that tDCS is an intervention that might promote functional recovery after a lesion in the central nervous system, thus reducing long-term disability and associated...

The Cybathlon promotes the development of assistive technology for people with physical disabilities

Background The Cybathlon is a new kind of championship, where people with physical disabilities compete against each other at tasks of daily life, with the aid of advanced assistive devices including robotic technologies. The first championship will take place at the Swiss Arena Kloten, Zurich, on 8 October 2016. The idea Six disciplines are part of the competition comprising...

Overground walking training with the i-Walker, a robotic servo-assistive device, enhances balance in patients with subacute stroke: a randomized controlled trial

Background Patients affected by mild stroke benefit more from physiological overground walking training than walking-like training performed in place using specific devices. The aim of the study was to evaluate the effects of overground robotic walking training performed with the servo-assistive robotic rollator (i-Walker) on walking, balance, gait stability and falls in a...

Ambulatory assessment of walking balance after stroke using instrumented shoes

Background For optimal guidance of walking rehabilitation therapy of stroke patients in an in-home setting, a small and easy to use wearable system is needed. In this paper we present a new shoe-integrated system that quantifies walking balance during activities of daily living and is not restricted to a lab environment. Quantitative parameters were related to clinically assessed...

A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking

Background Carrying load alters normal walking, imposes additional stress to the musculoskeletal system, and results in an increase in energy consumption and a consequent earlier onset of fatigue. This phenomenon is largely due to increased work requirements in lower extremity joints, in turn requiring higher muscle activation. The aim of this work was to assess the biomechanical...

Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length

Background Gait is emerging as a powerful diagnostic and prognostic tool, and as a surrogate marker of disease progression for Parkinson’s disease (PD). Accelerometer-based body worn monitors (BWMs) facilitate the measurement of gait in clinical environments. Moreover they have the potential to provide a more accurate reflection of gait in the home during habitual behaviours...

Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke

Background Virtual and mixed reality systems have been suggested to promote motor recovery after stroke. Basing on the existing evidence on motor learning, we have developed a portable and low-cost mixed reality tabletop system that transforms a conventional table in a virtual environment for upper limb rehabilitation. The system allows intensive and customized training of a wide...

Sub-sensory vibratory noise augments the physiologic complexity of postural control in older adults

Background Postural control requires numerous inputs interacting across multiple temporospatial scales. This organization, evidenced by the “complexity” contained within standing postural sway fluctuations, enables diverse system functionality. Age-related reduction of foot-sole somatosensation reduces standing postural sway complexity and diminishes the functionality of the...

Computational neurorehabilitation: modeling plasticity and learning to predict recovery

Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational...

Spatial distribution of HD-EMG improves identification of task and force in patients with incomplete spinal cord injury

Background Recent studies show that spatial distribution of High Density surface EMG maps (HD-EMG) improves the identification of tasks and their corresponding contraction levels. However, in patients with incomplete spinal cord injury (iSCI), some nerves that control muscles are damaged, leaving some muscle parts without an innervation. Therefore, HD-EMG maps in patients with...

A bi-articular model for scapular-humeral rhythm reconstruction through data from wearable sensors

Background Patient-specific performance assessment of arm movements in daily life activities is fundamental for neurological rehabilitation therapy. In most applications, the shoulder movement is simplified through a socket-ball joint, neglecting the movement of the scapular-thoracic complex. This may lead to significant errors. We propose an innovative bi-articular model of the...

A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly

Background The assessment of short episodes of gait is clinically relevant and easily implemented, especially given limited space and time requirements. BFS (body-fixed-sensors) are small, lightweight and easy to wear sensors, which allow the assessment of gait at relative low cost and with low interference. Thus, the assessment with BFS of short episodes of gait, extracted from...

The quality of turning in Parkinson’s disease: a compensatory strategy to prevent postural instability?

Background The ability to turn while walking is essential for daily living activities. Turning is slower and more steps are required to complete a turn in people with Parkinson’s disease (PD) compared to control subjects but it is unclear whether this altered strategy is pathological or compensatory. The aim of our study is to characterize the dynamics of postural stability...

The association of motor imagery and kinesthetic illusion prolongs the effect of transcranial direct current stimulation on corticospinal tract excitability

Background A kinesthetic illusion induced by a visual stimulus (KI) can produce vivid kinesthetic perception. During KI, corticospinal tract excitability increases and results in the activation of cerebral networks. Transcranial direct current stimulation (tDCS) is emerging as an alternative potential therapeutic modality for a variety of neurological and psychiatric conditions...

Muscle, functional and cognitive adaptations after flywheel resistance training in stroke patients: a pilot randomized controlled trial

Background Resistance exercise (RE) improves neuromuscular function and physical performance after stroke. Yet, the effects of RE emphasizing eccentric (ECC; lengthening) actions on muscle hypertrophy and cognitive function in stroke patients are currently unknown. Thus, this study explored the effects of ECC-overload RE training on skeletal muscle size and function, and...

Accelerometry-enabled measurement of walking performance with a robotic exoskeleton: a pilot study

Background Clinical scores for evaluating walking skills with lower limb exoskeletons are often based on a single variable, such as distance walked or speed, even in cases where a host of features are measured. We investigated how to combine multiple features such that the resulting score has high discriminatory power, in particular with few patients. A new score is introduced...

Body-machine interface for control of a screen cursor for a child with congenital absence of upper and lower limbs: a case report

Background There has been a recent interest in the development of body-machine interfaces which allow individuals with motor impairments to control assistive devices using body movements. Methods In this case study, we report findings in the context of the development of such an interface for a 10-year old child with congenital absence of upper and lower limbs. The interface...

Preparing a neuropediatric upper limb exergame rehabilitation system for home-use: a feasibility study

Background Home-based, computer-enhanced therapy of hand and arm function can complement conventional interventions and increase the amount and intensity of training, without interfering too much with family routines. The objective of the present study was to investigate the feasibility and usability of the new portable version of the YouGrabber® system (YouRehab AG, Zurich...