Shock and Vibration

https://www.hindawi.com/journals/sv/

List of Papers (Total 159)

Fault Diagnosis for Gearbox Based on Improved Empirical Mode Decomposition

The application of the improved empirical mode decomposition (EMD) theory in gearbox fault diagnosis has been studied in this paper, and the transient features of gearbox vibration signals are shown. Based on using EMD, an improved algorithm of orthogonal empirical mode decomposition (OEMD) is put forward and is applied to extract the fault feature. Finally, fault diagnosis...

A Vibration Control Method for the Flexible Arm Based on Energy Migration

A vibration control method based on energy migration is proposed to decrease vibration response of the flexible arm undergoing rigid motion. A type of vibration absorber is suggested and gives rise to the inertial coupling between the modes of the flexible arm and the absorber. By analyzing 1 : 2 internal resonance, it is proved that the internal resonance can be successfully...

Fault Diagnosis of Bearing Based on Cauchy Kernel Relevance Vector Machine Classifier with SIWPSO

Bearing is an important component of mechanical system; any defects of bearing will lead to serious damage for the entire mechanical system. In this paper, Cauchy kernel relevance vector machine with stochastic inertia weight particle swarm optimization algorithm (SIWPSO-CauchyRVM) is proposed to fault diagnosis for bearing. As the selection of the Cauchy kernel parameter has a...

Optimization of Vibration Reduction Ability of Ladder Tracks by FEM Coupled with ACO

Ladder track, which has drawn increased attention in scientific communities, is an effective method for reducing vibrations from underground railways. In order to optimize the vibration reduction ability of ladder track, a new method, that is, the finite element method (FEM) coupled with ant colony optimization (ACO), has been proposed in this paper. We describe how to build the...

Elliptical Leaf Spring Shock and Vibration Mounts with Enhanced Damping and Energy Dissipation Capabilities Using Lead Spring

We present an enhancement to the existing elliptical leaf spring (ELS) for improved damping and energy dissipation capabilities. The ELS consists of a high tensile stainless steel elliptical leaf spring with polymer or rubber compound. This device is conceived as a shock and vibration isolator for equipment and lightweight structures. The enhancement to the ELS consists of a lead...

Adaptive Hybrid Control of Vehicle Semiactive Suspension Based on Road Profile Estimation

A new road estimation based suspension hybrid control strategy is proposed. Its aim is to adaptively change control gains to improve both ride comfort and road handling with the constraint of rattle space. To achieve this, analytical expressions for ride comfort, road handling, and rattle space with respect to road input are derived based on the hybrid control, and the problem is...

Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway

Using UDEC discrete element numerical simulation software and a cosine wave as vibration source, the whole process of rockburst failure and the propagation and attenuation characteristics of shock wave in coal-rock medium were investigated in detail based on the geological and mining conditions of 1111(1) working face at Zhuji coal mine. Simultaneously, by changing the thickness...

The Mechanism and Application of Deep-Hole Precracking Blasting on Rockburst Prevention

The mechanism of preventing rockburst through deep-hole precracking blasting was studied based on experimental test, numerical simulation, and field testing. The study results indicate that the deep-hole precracking could change the bursting proneness and stress state of coal-rock mass, thereby preventing the occurrence of rockburst. The bursting proneness of the whole composite...

Vibration Control by Means of Piezoelectric Actuators Shunted with LR Impedances: Performance and Robustness Analysis

This paper deals with passive monomodal vibration control by shunting piezoelectric actuators to electric impedances constituting the series of a resistance and an inductance. Although this kind of vibration attenuation strategy has long been employed, there are still unsolved problems; particularly, this kind of control does suffer from issues relative to robustness because the...

Feasibility Verification of Mountable PZT-Interface for Impedance Monitoring in Tendon-Anchorage

This study has been motivated to numerically evaluate the performance of the mountable PZT-interface for impedance monitoring in tendon-anchorage. Firstly, electromechanical impedance monitoring and feature classification methods are outlined. Secondly, a structural model of tendon-anchorage subsystem with mountable PZT-interface is designed for impedance monitoring. Finally, the...

Performance Analysis of Wind-Induced Piezoelectric Vibration Bimorph Cantilever for Rotating Machinery

Harvesting the energy contained in the running environment of rotating machinery would be a good way to supplement energy to the wireless sensor. In this paper, we take piezoelectric bimorph cantilever beam with parallel connection mode as energy collector and analyze the factors which can influence the generation performance. First, a modal response theory model is built. Second...

Dynamic Analysis of Three-Layer Sandwich Beams with Thick Viscoelastic Damping Core for Finite Element Applications

This paper presents an analysis of the dynamic behaviour of constrained layer damping (CLD) beams with thick viscoelastic layer. A homogenised model for the flexural stiffness is formulated using Reddy-Bickford’s quadratic shear in each layer, and it is compared with Ross-Kerwin-Ungar (RKU) classical model, which considers a uniform shear deformation for the viscoelastic core. In...

Static and Dynamic Experiment Evaluations of a Displacement Differential Self-Induced Magnetorheological Damper

This paper presents the development of a novel magnetorheological damper (MRD) which has a self-induced ability. In this study, a linear variable differential sensor (LVDS) based on the electromagnetic induction mechanism was integrated with a conventional MRD. The structure of the displacement differential self-induced magnetorheological damper (DDSMRD) was developed, and the...

A Multiscale Finite Element Model Validation Method of Composite Cable-Stayed Bridge Based on Structural Health Monitoring System

A two-step response surface method for multiscale finite element model (FEM) updating and validation is presented with respect to Guanhe Bridge, a composite cable-stayed bridge in the National Highway number G15, in China. Firstly, the state equations of both multiscale and single-scale FEM are established based on the basic equation in structural dynamic mechanics to update the...

Embedded Electromechanical Impedance and Strain Sensors for Health Monitoring of a Concrete Bridge

Piezoelectric lead zirconate titanate (PZT) is one of the piezoelectric smart materials, which has direct and converse piezoelectric effects and can serve as an active electromechanical impedance (EMI) sensor. The design and fabrication processes of EMI sensors embedded into concrete structures are presented briefly. Subsequently, finite element modeling and modal analysis of a...

Dynamic Modeling and Vibration Analysis for the Vehicles with Rigid Wheels Based on Wheel-Terrain Interaction Mechanics

The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker’s equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this...

A Coupling Vibration Test Bench and the Simulation Research of a Maglev Vehicle

To study the characteristics of the coupling vibration between a maglev vehicle and its track beam system and to improve the performance of the levitation system, a new type of vibration test bench was developed. Take a single maglev frame as the study object; simulation of the coupling vibration of the maglev vehicle, levitation system, and track beam were achieved. In addition...

Damage Identification of Bridge Based on Chebyshev Polynomial Fitting and Fuzzy Logic without Considering Baseline Model Parameters

The paper presents an effective approach for damage identification of bridge based on Chebyshev polynomial fitting and fuzzy logic systems without considering baseline model data. The modal curvature of damaged bridge can be obtained through central difference approximation based on displacement modal shape. Depending on the modal curvature of damaged structure, Chebyshev...

Model Reduction Technique Tailored to the Dynamic Analysis of a Beam Structure under a Moving Load

This study presents a technique that uses a model reduction method for the dynamic response analysis of a beam structure to a moving load, which can be modeled either as a moving point force or as a moving body. The nature of the dedicated condensation method tailored to address the moving load case is that the master degrees of freedom are reselected, and the coefficient...

Free Vibration Analysis of Moderately Thick Rectangular Plates with Variable Thickness and Arbitrary Boundary Conditions

A generalized Fourier series solution based on the first-order shear deformation theory is presented for the free vibrations of moderately thick rectangular plates with variable thickness and arbitrary boundary conditions, a class of problem which is of practical interest and fundamental importance but rarely attempted in the literatures. Unlike in most existing studies where...

Concept Modelling of Vehicle Joints and Beam-Like Structures through Dynamic FE-Based Methods

This paper presents dynamic methodologies able to obtain concept models of automotive beams and joints, which compare favourably with the existing literature methods, in terms of accuracy, easiness of implementation, and computational loads. For the concept beams, the proposed method is based on a dynamic finite element (FE) approach, which estimates the stiffness characteristics...

Some Elements of Operational Modal Analysis

This paper gives an overview of the main components of operational modal analysis (OMA) and can serve as a tutorial for research oriented OMA applications. The paper gives a short introduction to the modeling of random responses and to the transforms often used in OMA such as the Fourier series, the Fourier integral, the Laplace transform, and the Z-transform. Then the paper...

Probabilistic Neural Network and Fuzzy Cluster Analysis Methods Applied to Impedance-Based SHM for Damage Classification

Impedance-based structural health monitoring technique is performed by measuring the variation of the electromechanical impedance of the structure caused by the presence of damage. The impedance signals are collected from patches of piezoelectric material bonded on the surface of the structure (or embedded). Through these piezoceramic sensor-actuators, the electromechanical...

The Nonlinear Stability Prediction and FEM Modeling of High-Speed Spindle System with Joints Dynamic Characteristics

When predicting the nonlinear stability of high-speed spindle system, it is necessary to create an accurate model that reflects the dynamic characteristics of the whole system, including the spindle-bearing joint and spindle-holder-tool joints. In this paper, the distribution spring model of spindle-holder-tool joints was built with the consideration of its dynamic...

Sound Radiation and Vibration of Composite Panels Excited by Turbulent Flow: Analytical Prediction and Analysis

The present study investigates the vibration and sound radiation by panels exited by turbulent flow and by random noise. Composite and aluminum panels are analyzed through a developed analytical framework. The main objective of this study is to identify the difference between the vibroacoustic behaviour of these two types of panels. This topic is of particular importance, given...