Nanoscale Research Letters

http://link.springer.com/journal/11671

List of Papers (Total 5,016)

The Periodic Instability of Diameter of ZnO Nanowires via a Self-oscillatory Mechanism

ZnO nanowires with a periodic instability of diameter were successfully prepared by a thermal physical vapor deposition method. The morphology of ZnO nanowires was investigated by SEM. SEM shows ZnO possess periodic bead-like structure. The instability only appears when the diameter of ZnO nanowires is small. The kinetics and mechanism of Instability was discussed at length. The ...

Binding Energy of Hydrogen-Like Impurities in Quantum Well Wires of InSb/GaAs in a Magnetic Field

The binding energy of a hydrogen-like impurity in a thin size-quantized wire of the InSb/GaAs semiconductors with Kane’s dispersion law in a magnetic fieldB parallel to the wire axis has been calculated as a function of the radius of the wire and magnitude ofB, using a variational approach. It is shown that when wire radius is less than the Bohr radius of the impurity, the ...

High P–T Nano-Mechanics of Polycrystalline Nickel

We have conducted high P–T synchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volume–pressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that ...

Multiple Wavelength InGaAs Quantum Dot Lasers Using Ion Implantation Induced Intermixing

We demonstrate multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing. Proton implantation, followed by annealing is used to create differential interdiffusion in the active region of the devices. The characteristics (lasing-spectra, threshold currents and slope efficiencies) of the multi-wavelength devices are compared to those of as-grown devices ...

The Role of Intrinsic and Surface States on the Emission Properties of Colloidal CdSe and CdSe/ZnS Quantum Dots

Time Resolved Photoluminescence (TRPL) measurements on the picosecond time scale (temporal resolution of 17 ps) on colloidal CdSe and CdSe/ZnS Quantum Dots (QDs) were performed. Transient PL spectra reveal three emission peaks with different lifetimes (60 ps, 460 ps and 9–10 ns, from the bluest to the reddest peak). By considering the characteristic decay times and by comparing the ...

Morphologies of Sol–Gel Derived Thin Films of ZnO Using Different Precursor Materials and their Nanostructures

We have shown that the morphological features of the sol–gel derived thin films of ZnO depend strongly on the choice of the precursor materials. In particular, we have used zinc nitrate and zinc acetate as the precursor materials. While the films using zinc acetate showed a smoother topography, those prepared by using zinc nitrate exhibited dendritic character. Both types of films ...

Nanoparticles for Applications in Cellular Imaging

In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous ...

Strain Relief Analysis of InN Quantum Dots Grown on GaN

We present a study by transmission electron microscopy (TEM) of the strain state of individual InN quantum dots (QDs) grown on GaN substrates. Moiré fringe and high resolution TEM analyses showed that the QDs are almost fully relaxed due to the generation of a 60° misfit dislocation network at the InN/GaN interface. By applying the Geometric Phase Algorithm to plan-view ...

Layers of Metal Nanoparticles on Semiconductors Deposited by Electrophoresis from Solutions with Reverse Micelles

Pd nanoparticles were prepared with reverse micelles of water/AOT/isooctane solution and deposited onto silicon or InP substrates by electrophoresis. A large change of capacitance-voltage characteristics of mercury contacts on a semiconductor was found after Pd deposition. This change could be modified when the Pd deposition is followed by a partial removal of the deposited AOT. ...

Hydrothermal synthesis of amorphous MoS2nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate

MoS2nanofiber bundles have been prepared by hydrothermal method using ammonium molybdate with sulfur source in acidic medium and maintained at 180 °C for several hours. The obtained black crystalline products are characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy ...

Boron and Nitrogen Doped Single walled Carbon Nanotubes as Possible Dilute Magnetic Semiconductors

The structure of single walled armchair and zig-zag carbon nanotubes having 70 atoms and two carbons replaced by boron or nitrogen is obtained at minium energy using HF/6-31G* molecular orbital theory. The calculations show that the ground state of the zig-zag tubes is a triplet state while for the armchair tubes it is a singlet. In the zig-zag tubes the density of states at the ...

An Organic Metal/Silver Nanoparticle Finish on Copper for Efficient Passivation and Solderability Preservation

For the first time, a complex formed by polyaniline (in its organic metal form) and silver has been deposited on copper in nanoparticulate form. When depositing on Cu pads of printed circuit boards it efficiently protects against oxidation and preserves its solderability. The deposited layer has a thickness of only nominally 50 nm, containing the Organic Metal (conductive polymer), ...

Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

We report on progress in growth and applications of submonolayer (SML) quantum dots (QDs) in high-speed vertical-cavity surface-emitting lasers (VCSELs). SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer ...

Bio-nanopatterning of Surfaces

Bio-nanopatterning of surfaces is a very active interdisciplinary field of research at the interface between biotechnology and nanotechnology. Precise patterning of biomolecules on surfaces with nanometre resolution has great potential in many medical and biological applications ranging from molecular diagnostics to advanced platforms for fundamental studies of molecular and cell ...

Preparation and Characterization of Nano structured Materials from Fly Ash: A Waste from Thermal Power Stations, by High Energy Ball Milling

The Class F fly ash has been subjected to high energy ball milling and has been converted into nanostructured material. The nano structured fly ash has been characterized for its particle size by using particle size analyzer, specific surface area with the help of BET surface area apparatus, structure by X-ray diffraction studies and FTIR, SEM and TEM have been used to study ...

Physical Behavior of Nanoporous Anodic Alumina Using Nanoindentation and Microhardness Tests

In this paper, the mechanical response and deformation behavior of anodic aluminum oxide (AAO) were investigated using experimental nanoindentation and Vickers hardness tests. The results showed the contact angle for the nanoporous AAO specimen was 105° and the specimen exhibited hydrophobic behavior. The hardness and the fracture strength of AAO were discussed and a ...

Decreased Fibroblast and Increased Osteoblast Functions on Ionic Plasma Deposited Nanostructured Ti Coatings

Bioactive coatings are in high demand to control cellular functions for numerous medical devices. The objective of this in vitro study was to characterize for the first time fibroblast (fibrous scar tissue forming cells) adhesion and proliferation on an important polymeric biomaterial (silicone) coated with titanium using a novel ionic plasma deposition (IPD) process. Fibroblasts ...

Tungsten Oxide Nanorods Array and Nanobundle Prepared by Using Chemical Vapor Deposition Technique

Tungsten oxide (WO3) nanorods array prepared using chemical vapor deposition techniques was studied. The influence of oxygen gas concentration on the nanoscale tungsten oxide structure was observed; it was responsible for the stoichiometric and morphology variation from nanoscale particle to nanorods array. Experimental results also indicated that the deposition temperature was ...

ZnO Nanorods via Spray Deposition of Solutions Containing Zinc Chloride and Thiocarbamide

In this work we present the results on formation of ZnO nanorods prepared by spray of aqueous solutions containing ZnCl2and thiocarbamide (tu) at different molar ratios. It has been observed that addition of thiocarbamide into the spray solution has great impact on the size, shape and phase composition of the ZnO crystals. Obtained layers were characterized by scanning electron ...

Nanomicrobiology

Recent advances in atomic force microscopy (AFM) are revolutionizing our views of microbial surfaces. While AFM imaging is very useful for visualizing the surface of hydrated cells and membranes on the nanoscale, force spectroscopy enables researchers to locally probe biomolecular forces and physical properties. These unique capabilities allow us to address a number of questions ...

Asymptotic Analysis of Coagulation–Fragmentation Equations of Carbon Nanotube Clusters

The possibility of the existence of single-wall carbon nanotubes (SWNTs) in organic solvents in the form of clusters is discussed. A theory is developed based on abundlet model for clusters describing the distribution function of clusters by size. The phenomena have a unified explanation in the framework of the bundlet model of a cluster, in accordance with which the free energy of ...

Ball Lightning–Aerosol Electrochemical Power Source or A Cloud of Batteries

Despite numerous attempts, an adequate theoretical and experimental simulation of ball lightning still remains incomplete. According to the model proposed here, the processes of electrochemical oxidation within separate aerosol particles are the basis for this phenomenon, and ball lightning is a cloud of composite nano or submicron particles, where each particle is a spontaneously ...

Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes

Multi-walled carbon nanotubes (MWNT) have been synthesized by chemical vapour decomposition (CVD) of acetylene over Rare Earth (RE) based AB2(DyNi2) alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric ...

Formation and Organization of Amino Terminated Self-assembled Layers on Si(001) Surface

We have investigated the effects of dipping time, solution concentration and solvent type on the formation of self-assembled monolayers with aminosiloxane molecules (i.e.,N-(3 trimethoxysilylpropyl)diethylenetriamine (TPDA)) on the Si(001) surface. Studies performed with an ellipsometer showed that monolayers with a thickness of about 1.2 nm were formed when the dipping time is ...

Influence of Anodic Conditions on Self-ordered Growth of Highly Aligned Titanium Oxide Nanopores

Self-aligned nanoporous TiO2templates synthesized via dc current electrochemical anodization have been carefully analyzed. The influence of environmental temperature during the anodization, ranging from 2 °C to ambient, on the structure and morphology of the nanoporous oxide formation has been investigated, as well as that of the HF electrolyte chemical composition, its ...