Nanoscale Research Letters

http://link.springer.com/journal/11671

List of Papers (Total 5,134)

Analysis of Bi Distribution in Epitaxial GaAsBi by Aberration-Corrected HAADF-STEM

The Bi content in GaAs/GaAs1 − xBi x /GaAs heterostructures grown by molecular beam epitaxy at a substrate temperature close to 340 °C is investigated by aberration-corrected high-angle annular dark-field techniques. The analysis at low magnification of high-angle annular dark-field scanning transmission electron microscopy images, corroborated by EDX analysis, revealed planar...

Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions

We optimized the performance of GaAs nanowire pin junction array solar cells by introducing AlGaAs/GaAs heterejunctions. AlGaAs is used for the p type top segment for axial junctions and the p type outer shell for radial junctions. The AlGaAs not only serves as passivation layers for GaAs nanowires but also confines the optical generation in the active regions, reducing the...

Horseradish Peroxidase-Encapsulated Hollow Silica Nanospheres for Intracellular Sensing of Reactive Oxygen Species

Reactive oxygen species (ROS) have crucial roles in cell signaling and homeostasis. Overproduction of ROS can induce oxidative damage to various biomolecules and cellular structures. Therefore, developing an approach capable of monitoring and quantifying ROS in living cells is significant for physiology and clinical diagnoses. Some cell-permeable fluorogenic probes developed are...

Hydrothermal Synthesized of CoMoO4 Microspheres as Excellent Electrode Material for Supercapacitor

The single-phase CoMoO4 was prepared via a facile hydrothermal method coupled with calcination treatment at 400 °C. The structures, morphologies, and electrochemical properties of samples with different hydrothermal reaction times were investigated. The microsphere structure, which consisted of nanoflakes, was observed in samples. The specific capacitances at 1 A g−1 are 151, 182...

Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency

This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency...

Synthesis and Characterization of Pure Copper Nanostructures Using Wood Inherent Architecture as a Natural Template

The inherent sophisticated structure of wood inspires researchers to use it as a natural template for synthesizing functional nanoparticles. In this study, pure copper nanoparticles were synthesized using poplar wood as a natural inexpensive and renewable template. The crystal structure and morphologies of the copper nanoparticles were characterized by X-ray diffraction and field...

Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent

One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective...

Shell Thickness Dependence of Interparticle Energy Transfer in Core-Shell ZnSe/ZnSe Quantum Dots Doping with Europium

Low-toxic core-shell ZnSe:Eu/ZnS quantum dots (QDs) were prepared through two steps in water solution: nucleation doping and epitaxial shell grown. The structural and morphological characteristics of ZnSe/ZnS:Eu QDs with different shell thickness were explored by transmission electron microscopy (TEM) and X-ray diffraction (XRD) results. The characteristic photoluminescence (PL...

Pseudospin Dependent One-Way Transmission in Graphene-Based Topological Plasmonic Crystals

Originating from the investigation of condensed matter states, the concept of quantum Hall effect and quantum spin Hall effect (QSHE) has recently been expanded to other field of physics and engineering, e.g., photonics and phononics, giving rise to strikingly unconventional edge modes immune to scattering. Here, we present the plasmonic analog of QSHE in graphene plasmonic...

Comparative Study of the Electrochemical, Biomedical, and Thermal Properties of Natural and Synthetic Nanomaterials

In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the...

Review Application of Nanostructured Black Silicon

As a widely used semiconductor material, silicon has been extensively used in many areas, such as photodiode, photodetector, and photovoltaic devices. However, the high surface reflectance and large bandgap of traditional bulk silicon restrict the full use of the spectrum. To solve this problem, many methods have been developed. Among them, the surface nanostructured silicon...

Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials

Bacterial resistance to antimicrobial therapies is an increasing clinical problem. This is as true for topical applications as it is for systemic therapy. Topically, copper ions may be effective and cheap antimicrobials that act through multiple pathways thereby limiting opportunities to bacteria for resistance. However, the chemistry of copper does not lend itself to facile...

Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge

Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The...

Interband Photoconductivity of Metamorphic InAs/InGaAs Quantum Dots in the 1.3–1.55-μm Window

Photoelectric properties of the metamorphic InAs/In x Ga1 − xAs quantum dot (QD) nanostructures were studied at room temperature, employing photoconductivity (PC) and photoluminescence spectroscopies, electrical measurements, and theoretical modeling. Four samples with different stoichiometry of In x Ga1 − xAs cladding layer have been grown: indium content x was 0.15, 0.24, 0.28...

Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue

It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and...

Ferroelectric Field Effect Induced Asymmetric Resistive Switching Effect in BaTiO3/Nb:SrTiO3 Epitaxial Heterojunctions

Asymmetric resistive switching processes were observed in BaTiO3/Nb:SrTiO3 epitaxial heterojunctions. The SET switching time from the high-resistance state to low-resistance state is in the range of 10 ns under + 8 V bias, while the RESET switching time from the low-resistance state to high-resistance state is in the range of 105 ns under − 8 V bias. The ferroelectric...

Titania-Coated Silica Alone and Modified by Sodium Alginate as Sorbents for Heavy Metal Ions

The novel organic-inorganic biohybrid composite adsorbent was synthesized based on nanosized silica-titania modified with alginate within the development of effective adsorbent for heavy metal ions. Effects of metal species Cu(II), Zn(II), Cd(II), and Pb(II); concentrations; pH; temperature; and adsorption onto titania-coated silica (ST20) initial or modified by sodium alginate...

Impedance Analysis of Thin Films of Organic-Inorganic Perovskites CH3NH3PbI3 with Control of Microstructure

The effect of starting reagents (PbI2:{CH3NH3I + CH3NH3Cl}) with different ratios in raw solutions on the microstructure of films of organic-inorganic perovskites CH3NH3PbI3-xClx, as well as on the electrical properties, has been investigated. It was found that the crystallinity is increased sharply when the ratio of the starting reagents increases from 1:1 to 1:2 and is changed...

Thickness-dependent Magnetic and Microwave Resonance Characterization of Combined Stripe Patterned FeCoBSi Films

In this paper, we fabricated a series of FeCoBSi multistoried patterned magnetic films with different thickness by traditional UV lithography method and DC sputtering deposition. Broad resonance band phenomenon was observed during high frequency property characterization, with full width half maximum (FWHM) of 4 GHz when the film thickness is 45 nm. The broad resonance band...

Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic...

Novel Anodic Catalyst Support for Direct Methanol Fuel Cell: Characterizations and Single-Cell Performances

This study introduces a novel titanium dioxide carbon nanofiber (TiO2-CNF) support for anodic catalyst in direct methanol fuel cell. The catalytic synthesis process involves several methods, namely the sol-gel, electrospinning, and deposition methods. The synthesized electrocatalyst is compared with other three electrocatalysts with different types of support. All of these...

Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure

This paper reports inverted pyramid microstructure-based single-crystalline silicon (sc-Si) solar cell with a conversion efficiency up to 20.19% in standard size of 156.75 × 156.75 mm2. The inverted pyramid microstructures were fabricated jointly by metal-assisted chemical etching process (MACE) with ultra-low concentration of silver ions and optimized alkaline anisotropic...