Nanoscale Research Letters

http://link.springer.com/journal/11671

List of Papers (Total 5,115)

Transformation of β-Ni(OH)2to NiO nano-sheets via surface nanocrystalline zirconia coating: Shape and size retention

Shape and size of the synthesized NiO nano-sheets were retained during transformation of sheet-like β-Ni(OH)2to NiO at elevated temperatures via nano-sized zirconia coating on the surface of β-Ni(OH)2. The average grain size was 6.42 nm after 600 °C treatment and slightly increased to 10 nm after 1000 °C treatment, showing effective sintering retardation between NiO nano-sheets...

Synthesis and characterization of Nb2O5@C core-shell nanorods and Nb2O5 nanorods by reacting Nb(OEt)5 via RAPET (reaction under autogenic pressure at elevated temperatures) technique

The reaction of pentaethoxy niobate, Nb(OEt)5, at elevated temperature (800 °C) under autogenic pressure provides a chemical route to niobium oxide nanorods coated with amorphous carbon. This synthetic approach yielded nanocrystalline particles of Nb2O5@C. As prepared Nb2O5@C core-shell nanorods is annealed under air at 500 °C for 3 h (removing the carbon coating) results in neat...

Unbound states in quantum heterostructures

We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum...

Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique

An atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs). Presently, the site precision is as good as  ± 1.5 nm and the size fluctuation is within  ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated...

Evolution of wetting layer in InAs/GaAs quantum dot system

For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavy- and light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount...

Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances

We describe the peculiar conditions under which optically driven gold nanoparticles (NPs) can significantly increase temperature or even melt a surrounding matrix. The heating and melting processes occur under light illumination and involve the plasmon resonance. For the matrix, we consider water, ice, and polymer. Melting and heating the matrix becomes possible if a nanoparticle...

Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects

We have studied the photoluminescence and Raman spectra of a system consisting of a polystyrene latex microsphere coated by CdTe colloidal quantum dots. The cavity-induced enhancement of the Raman scattering allows the observation of Raman spectra from only a monolayer of CdTe quantum dots. Periodic structure with very narrow peaks in the photoluminescence spectra of a single...

Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission

A new method for the capping of colloidal CdS nanocrystals with ZnS shells is presented. A combination of the monomolecular precursor zinc ethylxanthate (Zn(ex)2) and zinc stearate was used to replace hazardous organometallic reagents usually applied in this procedure, i.e. bis(trimethylsilyl) sulfide and diethylzinc. Its simple preparation, air-stability and low decomposition...

Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation

Self-assembled GaInNAs quantum dots (QDs) were grown on GaAs (001) substrate using solid-source molecular-beam epitaxy (SSMBE) equipped with a radio-frequency nitrogen plasma source. The GaInNAs QD growth characteristics were extensively investigated using atomic-force microscopy (AFM), photoluminescence (PL), and transmission electron microscopy (TEM) measurements. Self...

Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy

One of the main directions of contemporary semiconductor physics is the production and study of structures with a dimension less than two: quantum wires and quantum dots, in order to realize novel devices that make use of low-dimensional confinement effects. One of the promising fabrication methods is to use self-organized three-dimensional (3D) structures, such as 3D coherent...

Self-organization of quantum-dot pairs by high-temperature droplet epitaxy

The spontaneously formation of epitaxial GaAs quantum-dot pairs was demonstrated on an AlGaAs surface using Ga droplets as a Ga nano-source. The dot pair formation was attributed to the anisotropy of surface diffusion during high-temperature droplet epitaxy.

Fabricating colloidal crystals and construction of ordered nanostructures

Colloidal crystals of polymeric or inorganic microspheres are of extensive interest due to their potential applications in such as sensing, optics, photonic bandgap and surface patterning. The article highlights a set of approaches developed in our group, which are efficient to prepare colloidal crystals with ordered voids, patterned colloidal crystals on non-planar surfaces...

Buffer layer-assisted growth of Ge nanoclusters on Si

In the buffer layer-assisted growth method, a condensed inert gas layer of xenon, with low-surface free energy, is used as a buffer to prevent direct interactions of deposited atoms with substrates. Because of␣an unusually wide applicability, the buffer layer-assisted growth method has provided a unique avenue for creation of nanostructures that are otherwise impossible to grow...

Multi-scale ordering of self-assembled InAs/GaAs(001) quantum dots

Ordering phenomena related to the self-assembly of InAs quantum dots (QD) grown on GaAs(001) substrates are experimentally investigated on different length scales. On the shortest length-scale studied here, we examine the QD morphology and observe two types of QD shapes, i.e., pyramids and domes. Pyramids are elongated along the [1–10] directions and are bounded by {137} facets...

Guided self-assembly of lateral InAs/GaAs quantum-dot molecules for single molecule spectroscopy

We report on the growth and characterization of lateral InAs/GaAs (001) quantum-dot molecules (QDMs) suitable for single QDM optical spectroscopy. The QDMs, forming by depositing InAs on GaAs surfaces with self-assembled nanoholes, are aligned along the [ ] direction. The relative number of isolated single quantum dots (QDs) is substantially reduced by performing the growth on...