Nanoscale Research Letters

http://link.springer.com/journal/11671

List of Papers (Total 5,102)

The optimum titanium precursor of fabricating TiO2 compact layer for perovskite solar cells

Perovskite solar cells (PSCs) have attracted tremendous attentions due to its high performance and rapid efficiency promotion. Compact layer plays a crucial role in transferring electrons and blocking charge recombination between the perovskite layer and fluorine-doped tin oxide (FTO) in PSCs. In this study, compact TiO2 layers were synthesized by spin-coating method with three...

Estimation of Supercapacitor Energy Storage Based on Fractional Differential Equations

In this paper, new results on using only voltage measurements on supercapacitor terminals for estimation of accumulated energy are presented. For this purpose, a study based on application of fractional–order models of supercapacitor charging/discharging circuits is undertaken. Parameter estimates of the models are then used to assess the amount of the energy accumulated in...

Influence of Elastic Stiffness and Surface Adhesion on Bouncing of Nanoparticles

Granular collisions are characterized by a threshold velocity, separating the low-velocity regime of grain sticking from the high-velocity regime of grain bouncing: the bouncing velocity, v b . This parameter is particularly important for nanograins and has applications for instance in astrophysics where it enters the description of collisional dust aggregation. Analytic...

Evaluation of Graphene/WO3 and Graphene/CeO x Structures as Electrodes for Supercapacitor Applications

The combination of graphene with transition metal oxides can result in very promising hybrid materials for use in energy storage applications thanks to its intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. In the present work, we evaluate the performance of graphene/metal...

Preparation and Optical Properties of GeBi Films by Using Molecular Beam Epitaxy Method

Ge-based alloys have drawn great interest as promising materials for their superior visible to infrared photoelectric performances. In this study, we report the preparation and optical properties of germanium-bismuth (Ge1-xBix) thin films by using molecular beam epitaxy (MBE). GeBi thin films belong to the n-type conductivity semiconductors, which have been rarely reported. With...

Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode

Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI...

Perovskite Solar Cells Fabricated by Using an Environmental Friendly Aprotic Polar Additive of 1,3-Dimethyl-2-imidazolidinone

Perovskite solar cells (PSCs) have great potentials in photovoltaics due to their high power conversion efficiency and low processing cost. PSCs are usually fabricated from PbI2/dimethylformamide solution with some toxic additives, such as N-methyl pyrrolidone and hexamethylphosphoramide. Here, we use an environmental friendly aprotic polar solvent, 1,3-dimethyl-2-imidazolidinone...

Maghemite Nanoparticles Acts as Nanozymes, Improving Growth and Abiotic Stress Tolerance in Brassica napus

Yttrium doping-stabilized γ-Fe2O3 nanoparticles were studied for its potential to serve as a plant fertilizer and, through enzymatic activity, support drought stress management. Levels of both hydrogen peroxide and lipid peroxidation, after drought, were reduced when γ-Fe2O3 nanoparticles were delivered by irrigation in a nutrient solution to Brassica napus plants grown in soil...

Controlled Synthesis of BaYF5:Er3+, Yb3+ with Different Morphology for the Enhancement of Upconversion Luminescence

In this work, Er3+/Yb3+-codoped BaYF5 with different sizes and shapes have been synthesized by a simple solvothermal method. By changing the fluoride source, pH value, solvent, surfactants, Yb3+ concentration, temperature, and reaction time, the optimum synthetic conditions of BaYF5:Er3+, Yb3+ were found to improve the upconversion luminescent properties. It is found that the...

Probing the Structural, Electronic, and Magnetic Properties of Ag n V (n = 1–12) Clusters

The structural, electronic, and magnetic properties of Ag n V (n = 1–12) clusters have been studied using density functional theory and CALYPSO structure searching method. Geometry optimizations manifest that a vanadium atom in low-energy AgnV clusters favors the most highly coordinated location. The substitution of one V atom for an Ag atom in Ag n + 1 (n ≥ 5) cluster modifies...

Embedded Si/Graphene Composite Fabricated by Magnesium-Thermal Reduction as Anode Material for Lithium-Ion Batteries

Embedded Si/graphene composite was fabricated by a novel method, which was in situ generated SiO2 particles on graphene sheets followed by magnesium-thermal reduction. The tetraethyl orthosilicate (TEOS) and flake graphite was used as original materials. On the one hand, the unique structure of as-obtained composite accommodated the large volume change to some extent...

Reversible Electrochemical Control over Photoexcited Luminescence of Core/Shell CdSe/ZnS Quantum Dot Film

Semiconductor quantum dots (QDs) are widely used in light-emitting diodes and solar cells. Electrochemical modulation is a good way to understand the electrical and optical properties of QDs. In this work, the effects of electrochemical control on photoluminescence (PL) spectra in core/shell CdSe/ZnS QD films are studied. The results show different spectral responses for surface...

Surface Nanostructures Formed by Phase Separation of Metal Salt–Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications

This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt–polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask...

Biocompatible 5-Aminolevulinic Acid/Au Nanoparticle-Loaded Ethosomal Vesicles for In Vitro Transdermal Synergistic Photodynamic/Photothermal Therapy of Hypertrophic Scars

Biocompatible 5-aminolevulinic acid/Au nanoparticle-loaded ethosomal vesicle (A/A-ES) is prepared via ultrasonication for synergistic transdermal photodynamic/photothermal therapy (PDT/PTT) of hypertrophic scar (HS). Utilizing ultrasonication, Au nanoparticles (AuNPs) are synthesized and simultaneously loaded in ethosomal vesicles (ES) without any toxic agents, and 5...

A Two-Step Methodology to Study the Influence of Aggregation/Agglomeration of Nanoparticles on Young’s Modulus of Polymer Nanocomposites

A two-step technique based on micromechanical models is suggested to determine the influence of aggregated/agglomerated nanoparticles on Young’s modulus of polymer nanocomposites. The nanocomposite is assumed to include nanoparticle aggregation/agglomeration and effective matrix phases. This method is examined for different samples, and the effects of important parameters on the...

An Investigation on a Crystalline-Silicon Solar Cell with Black Silicon Layer at the Rear

Crystalline-Si (c-Si) solar cell with black Si (b-Si) layer at the rear was studied in order to develop c-Si solar cell with sub-band gap photovoltaic response. The b-Si was made by chemical etching. The c-Si solar cell with b-Si at the rear was found to perform far better than that of similar structure but with no b-Si at the rear, with the efficiency being increased relatively...

Preparation and Thermoelectric Characteristics of ITO/PtRh:PtRh Thin Film Thermocouple

Thin film thermocouples (TFTCs) can provide more precise in situ temperature measurement for aerospace propulsion systems without disturbance of gas flow and surface temperature distribution of the hot components. ITO/PtRh:PtRh TFTC with multilayer structure was deposited on alumina ceramic substrate by magnetron sputtering. After annealing, the TFTC was statically calibrated for...

Polyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery

An activated carbon aerogel (ACA-500) with high surface area (1765 m2 g−1), pore volume (2.04 cm3 g−1), and hierarchical porous nanonetwork structure is prepared through direct activation of organic aerogel (RC-500) with a low potassium hydroxide ratio (1:1). Based on this substrate, a polyaniline (PANi)-coated activated carbon aerogel/sulfur (ACA-500-S@PANi) composite is...

Hybrid UV-Ozone-Treated rGO-PEDOT:PSS as an Efficient Hole Transport Material in Inverted Planar Perovskite Solar Cells

Inverted planar perovskite solar cells (PSCs), which are regarded as promising devices for new generation of photovoltaic systems, show many advantages, such as low-temperature film formation, low-cost fabrication, and smaller hysteresis compared with those of traditional n-i-p PSCs. As an important carrier transport layer in PSCs, the hole transport layer (HTL) considerably...

Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton

Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to ENPs are still not well established. Here, we investigate four different diatom species (Odontella mobiliensis, Skeletonema grethae, Phaeodactylum tricornutum...

Synergetic Effect of Dy2O3 and Ca Co-Dopants towards Enhanced Coercivity of Rare Earth Abundant RE-Fe-B Magnets

Low coercivity is the main disadvantage of RE-Fe-B permanent magnets containing highly abundant rare earths (RE: La, Ce) from the application point of view, even though they exhibit many cost and resource advantages. In this work, an industrial mixed rare earth alloy (RE100 = La30.6Ce50.2Pr6.4Nd12.8) with a high amount of the more abundant elements was adopted to fabricate RE-Fe...

Fabrication and Characterization of New Composite Tio2 Carbon Nanofiber Anodic Catalyst Support for Direct Methanol Fuel Cell via Electrospinning Method

Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The...

Designing Neat and Composite Carbon Nanotube Materials by Porosimetric Characterization

We propose a porosimetry-based method to characterize pores formed by carbon nanotubes (CNTs) in the CNT agglomerates for designing neat CNT-based materials and composites. CNT agglomerates contain pores between individual CNTs and/or CNT bundles (micropore < 2 nm, mesopores 2–50 nm, and macropores > 50 nm). We investigated these pores structured by CNTs with different diameters...

Nano-Se Assimilation and Action in Poultry and Other Monogastric Animals: Is Gut Microbiota an Answer?

Recently, a comprehensive review paper devoted to roles of nano-Se in livestock and fish nutrition has been published in the Nanoscale Research Letters. The authors described in great details an issue related to nano-Se production and its possible applications in animal industry and medicine. However, molecular mechanisms of nano-Se action were not described and the question of...

A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance

In this work, we integrated Ag3PO4 with Bi4Ti3O12 to form Bi4Ti3O12/Ag3PO4 heterojunction nanocomposites by an ion-exchange method. The as-prepared Bi4Ti3O12/Ag3PO4 composites were systematically characterized by means of XRD, SEM, TEM, BET, XPS, UV-vis DRS, EIS, PL spectroscopy, and photocurrent response. SEM, TEM, and XPS results demonstrate the creation of Bi4Ti3O12/Ag3PO4...