Nanoscale Research Letters

http://link.springer.com/journal/11671

List of Papers (Total 4,845)

Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles

Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological ...

Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect

In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal ...

SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties

Zero- and 1D (one-dimensional) tin (IV) oxide nanostructures have been synthesized by thermal evaporation method, and a comparison of their morphology, crystal structure, sorption properties, specific surface area, as well as electrical characteristics has been performed. Synthesized SnO2 nanomaterials were studied by X-ray diffraction, scanning and transmission electron microscopy ...

Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System

Hafnium oxide (HfO2) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this ...

Numerical Study on Convective Heat Transfer Enhancement in Horizontal Rectangle Enclosures Filled with Ag-Ga Nanofluid

The natural convection heat transfer of horizontal rectangle enclosures with different aspect ratios (A = 2:1 and A = 4:1) filled with Ag-Ga nanofluid (different nanoparticle volume fractions φ = 0.01, φ = 0.03, φ = 0.05 and radiuses r = 20 nm, r = 40 nm, r = 80 nm) at different Rayleigh numbers (Ra = 1 × 103 and Ra = 1 × 105) is investigated by a two-phase lattice Boltzmann model. ...

Investigating the Heavy Metal Adsorption of Mesoporous Silica Materials Prepared by Microwave Synthesis

Mesoporous silica materials (MSMs) of the MCM-41 type were rapidly synthesized by microwave heating using silica fume as silica source and evaluated as adsorbents for the removal of Cu2+, Pb2+, and Cd2+ from aqueous solutions. The effects of microwave heating times on the pore structure of the resulting MSMs were investigated as well as the effects of different acids which were ...

Semiconductor Gas Sensors Based on Pd/SnO2 Nanomaterials for Methane Detection in Air

Semiconductor sensors based on nanosized Pd-containing tin dioxide have been obtained by a sol–gel technique. Semiconductor gas-sensitive materials were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) methods. Influence of Pd additives on sensitivity of the sensors to methane has been studied. Temperature dependences of electrical resistance in ...

Comparative Study of Photoelectric Properties of Metamorphic InAs/InGaAs and InAs/GaAs Quantum Dot Structures

Optical and photoelectric properties of metamorphic InAs/InGaAs and conventional pseudomorphic InAs/GaAs quantum dot (QD) structures were studied. We used two different electrical contact configurations that allowed us to have the current flow (i) only through QDs and embedding layers and (ii) through all the structure, including the GaAs substrate (wafer). Different optical ...

Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a ...

Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing

Recently, colored H-doped TiO2 (H-TiO2) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core—disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO2 have been developed, such as high temperature hydrogen furnace tube ...

Ion Beam Nanostructuring of HgCdTe Ternary Compound

Systematic study of mercury cadmium telluride thin films subjected to the ion beam bombardment was carried out. The evolution of surface morphology of (111) Hg1 − x Cd x Te (x ~ 0.223) epilayers due to 100 keV B+ and Ag+ ion irradiation was studied by AFM and SEM methods. X-ray photoelectron spectroscopy and X-ray diffraction methods were used for the investigation of the chemical ...

Effect of hydrogen treatment temperature on the properties of InGaN/GaN multiple quantum wells

InGaN/GaN multiple quantum wells (MQWs) were grown with hydrogen treatment at well/barrier upper interface under different temperatures. Hydrogen treatment temperature greatly affects the characteristics of MQWs. Hydrogen treatment conducted at 850 °C improves surface and interface qualities of MQWs, as well as significantly enhances room temperature photoluminescence (PL) ...

Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule

Background Deoxyribonucleic acid (DNA) is one of the best candidate materials for various device applications such as in electrodes for rechargeable batteries, biosensors, molecular electronics, medical- and biomedical-applications etc. Hence, it is worthwhile to examine the mechanism of charge transport in the DNA molecule, however, still a question without a clear answer is DNA a ...

Efficient Carrier Injection, Transport, Relaxation, and Recombination Associated with a Stronger Carrier Localization and a Low Polarization Effect of Nonpolar m-plane InGaN/GaN Light-Emitting Diodes

Based on time-resolved electroluminescence (TREL) measurement, more efficient carrier injection, transport, relaxation, and recombination associated with a stronger carrier localization and a low polarization effect in a nonpolar m-plane InGaN/GaN light emitting diode (m-LED), compared with those in a polar c-LED, are reported. With a higher applied voltage in the c-LED, decreasing ...

Immobilization of pH-sensitive CdTe Quantum Dots in a Poly(acrylate) Hydrogel for Microfluidic Applications

Microfluidic devices present the basis of modern life sciences and chemical information processing. To control the flow and to allow optical readout, a reliable sensor material that can be easily utilized for microfluidic systems is in demand. Here, we present a new optical readout system for pH sensing based on pH sensitive, photoluminescent glutathione capped cadmium telluride ...

In Situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Poly[N-(4-carboxyphenyl)methacrylamide] on Toxic Metal Ions

In situ immobilization of poly[N-(4-carboxyphenyl)methacrylamide] has been performed on silica gel surface. Infrared (IR) and mass spectroscopies as well as thermogravimetry (TG) analysis have been used to elucidate the structure of immobilized polymer. An adsorption capacity of the synthesized composite towards Cu(II), Pb(II), Mn(II), Fe(III), Co(II), and Ni(II) ions has been ...

AlN Surface Passivation of GaN-Based High Electron Mobility Transistors by Plasma-Enhanced Atomic Layer Deposition

We report a low current collapse GaN-based high electron mobility transistor (HEMT) with an excellent thermal stability at 150 °C. The AlN was grown by N2-based plasma enhanced atomic layer deposition (PEALD) and shown a refractive index of 1.94 at 633 nm of wavelength. Prior to deposit AlN on III-nitrides, the H2/NH3 plasma pre-treatment led to remove the native gallium oxide. The ...

Electrospun Poly(ε-caprolactone) Composite Nanofibers with Controlled Release of Cis-Diamminediiodoplatinum for a Higher Anticancer Activity

Poly(ε-caprolactone) (PCL) nanofibers were prepared by electrospun, on which the cis-diamminediiodoplatinum (cis-DIDP) was loaded, cis-DIDP@PCL, which effectively overcame cis-DIDP from dissociation or premature interaction with other bimolecular groups. Meanwhile, the toxicity and cross-resistance of cis-DIDP were reduced greatly. In vitro, cis-DIDP released from the PCL ...

Structural Variety and Adsorptive Properties of Mesoporous Silicas with Immobilized Oligosaccharide Groups

In this research, we report on the synthesis of mesoporous silicas with various quantities of immobilized oligosaccharide groups and different pore ordering degree. The hydrothermal co-condensation of tetraethyl orthosilicate and β-cyclodextrin-containing organosilane in the presence of cetyltrimethylammonium bromide template was employed. The purpose of this investigation was to ...

Nanoporous Cyanate Ester Resins: Structure-Gas Transport Property Relationships

This contribution addresses the relationships between the structure and gas transport properties of nanoporous thermostable cyanate ester resins (CERs) derived from polycyclotrimerization of 1,1′-bis(4-cyanatophenyl)ethane in the presence of 30 or 50 wt% of inert high-boiling temperature porogens (i.e., dimethyl- or dibutyl phthalates), followed by their quantitative removal. The ...

Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting

Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. ...

Anisotropy of Single-Crystal Silicon in Nanometric Cutting

The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0–10], (100)[0-1-1], (110)[−110], (110)[00–1], (111)[−101], and ...