Journal of Cardiovascular Translational Research

http://link.springer.com/journal/12265

List of Papers (Total 126)

Downregulation of the Complement Cascade In Vitro, in Mice and in Patients with Cardiovascular Disease by the BET Protein Inhibitor Apabetalone (RVX-208)

Apabetalone (RVX-208) is an epigenetic regulator developed to treat cardiovascular disease (CVD) that targets BET proteins. Through transcriptional regulation RVX-208 modulates pathways that underlie CVD including reverse cholesterol transport, vascular inflammation, coagulation, and complement. Using transcriptomics and proteomics we show that complement is one of the top pathways ...

Disaggregation Following Agonist-Induced Platelet Activation in Patients on Dual Antiplatelet Therapy

Disaggregation as the difference between maximal and final platelet aggregation by light transmission aggregometry indicates the stability of platelet aggregates. We evaluated the extent of disaggregation after platelet stimulation with adenosine diphosphate (ADP), arachidonic acid (AA), collagen, epinephrine, and thrombin receptor-activating peptide (TRAP)-6 in 323 patients on ...

Radiofrequency Ablation of the Atherosclerotic Plaque: a Proof of Concept Study in an Atherosclerotic Model

Increased plaque vascularization is causatively associated with the progression of unstable atherosclerotic vessel disease. We investigated the safety and efficacy of heat-generating radiofrequency ablation (RFA) in reducing the number of vessels in the plaque and adventitia and its effect on plaque size and composition. To this end, New Zealand White rabbits were fed a ...

Mimicking Cardiac Fibrosis in a Dish: Fibroblast Density Rather than Collagen Density Weakens Cardiomyocyte Function

Cardiac fibrosis is one of the most devastating effects of cardiac disease. Current in vitro models of cardiac fibrosis do not sufficiently mimic the complex in vivo environment of the cardiomyocyte. We determined the local composition and mechanical properties of the myocardium in established mouse models of genetic and acquired fibrosis and tested the effect of myocardial ...

Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo

It is well known that the number of patients requiring a vascular grafts for use as vessel replacement in cardiovascular diseases, or as vascular access site for hemodialysis is ever increasing. The development of tissue engineered blood vessels (TEBV’s) is a promising method to meet this increasing demand vascular grafts, without having to rely on poorly performing synthetic ...

Implantation of a Poly-l-Lactide GCSF-Functionalized Scaffold in a Model of Chronic Myocardial Infarction

A previously developed poly-l-lactide scaffold releasing granulocyte colony-stimulating factor (PLLA/GCSF) was tested in a rabbit chronic model of myocardial infarction (MI) as a ventricular patch. Control groups were constituted by healthy, chronic MI and nonfunctionalized PLLA scaffold. PLLA-based electrospun scaffold efficiently integrated into a chronic infarcted myocardium. ...

A Study of Coronary Bifurcation Shape in a Normal Population

During percutaneous coronary intervention, stents are placed in narrowings of the arteries to restore normal blood flow. Despite improvements in stent design, deployment techniques and drug-eluting coatings, restenosis and stent thrombosis remain a significant problem. Population stent design based on statistical shape analysis may improve clinical outcomes. Computed tomographic ...

In Vitro Hydrodynamic Assessment of a New Transcatheter Heart Valve Concept (the TRISKELE)

This study presents the in vitro hydrodynamic assessment of the TRISKELE, a new system suitable for transcatheter aortic valve implantation (TAVI), aiming to mitigate the procedural challenges experienced with current technologies. The TRISKELE valve comprises three polymeric leaflet and an adaptive sealing cuff, supported by a novel fully retrievable self-expanding nitinol wire ...

Stem Cell Therapy for the Heart: Blind Alley or Magic Bullet?

When stressed by ageing or disease, the adult human heart is unable to regenerate, leading to scarring and hypertrophy and eventually heart failure. As a result, stem cell therapy has been proposed as an ultimate therapeutic strategy, as stem cells could limit adverse remodelling and give rise to new cardiomyocytes and vasculature. Unfortunately, the results from clinical trials to ...

Bone Marrow-Derived Progenitor Cells Are Functionally Impaired in Ischemic Heart Disease

To determine whether the presence of ischemic heart disease (IHD) per se, or rather the co-presence of heart failure (HF), is the primum movens for less effective stem cell products in autologous stem cell therapy, we assessed numbers and function of bone marrow (BM)-derived progenitor cells in patients with coronary artery disease (n = 17), HF due to ischemic cardiomyopathy (n = ...

Circulating Extracellular Vesicles Contain miRNAs and are Released as Early Biomarkers for Cardiac Injury

Plasma-circulating microRNAs have been implicated as novel early biomarkers for myocardial infarction (MI) due to their high specificity for cardiac injury. For swift clinical translation of this potential biomarker, it is important to understand their temporal and spatial characteristics upon MI. Therefore, we studied the temporal release, potential source, and transportation of ...

Old Myths, New Concerns: the Long-Term Effects of Ascending Aorta Replacement with Dacron Grafts. Not All That Glitters Is Gold

Synthetic grafts are widely used in cardiac and vascular surgery since the mid-1970s. Despite their general good performance, inability of mimicking the elastomechanical characteristics of the native arterial tissue, and the consequent lack of adequate compliance, leads to a cascade of hemodynamic and biological alterations deeply affecting cardiovascular homeostasis. Those ...

Why QRS Duration Should Be Replaced by Better Measures of Electrical Activation to Improve Patient Selection for Cardiac Resynchronization Therapy

Cardiac resynchronization therapy (CRT) is a well-known treatment modality for patients with a reduced left ventricular ejection fraction accompanied by a ventricular conduction delay. However, a large proportion of patients does not benefit from this therapy. Better patient selection may importantly reduce the number of non-responders. Here, we review the strengths and weaknesses ...

Reducing Microvascular Dysfunction in Revascularized Patients with ST-Elevation Myocardial Infarction by Off-Target Properties of Ticagrelor versus Prasugrel. Rationale and Design of the REDUCE-MVI Study

Microvascular injury is present in a large proportion of patients with ST-elevation myocardial infarction (STEMI) despite successful revascularization. Ticagrelor potentially mitigates this process by exerting additional adenosine-mediated effects. This study aims to determine whether ticagrelor is associated with a better microvascular function compared to prasugrel as maintenance ...

Spatial Orientation and Morphology of the Pulmonary Artery: Relevance to Optimising Design and Positioning of a Continuous Pressure Monitoring Device

Personalised treatment of heart disease requires an understanding of the patient-specific characteristics, which can vary over time. A newly developed implantable surface acoustic wave pressure sensor, capable of continuous monitoring of the left ventricle filling pressure, is a novel device for personalised management of patients with heart disease. However, a one-size-fits-all ...

A New NO-Releasing Nanoformulation for the Treatment of Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is a chronic and progressive disease which continues to carry an unacceptably high mortality and morbidity. The nitric oxide (NO) pathway has been implicated in the pathophysiology and progression of the disease. Its extremely short half-life and systemic effects have hampered the clinical use of NO in PAH. In an attempt to circumvent these ...

QUest for the Arrhythmogenic Substrate of Atrial fibRillation in Patients Undergoing Cardiac Surgery (QUASAR Study): Rationale and Design

The heterogeneous presentation and progression of atrial fibrillation (AF) implicate the existence of different pathophysiological processes. Individualized diagnosis and therapy of the arrhythmogenic substrate underlying AF may be required to improve treatment outcomes. Therefore, this single-center study aims to identify the arrhythmogenic areas underlying AF by intra-operative, ...

Nucleotide Catabolism on the Surface of Aortic Valve Xenografts; Effects of Different Decellularization Strategies

Extracellular nucleotide metabolism controls thrombosis and inflammation and may affect degeneration and calcification of aortic valve prostheses. We evaluated the effect of different decellularization strategies on enzyme activities involved in extracellular nucleotide metabolism. Porcine valves were tested intact or decellularized either by detergent treatment or hypotonic lysis ...

Development of a Comprehensive Sequencing Assay for Inherited Cardiac Condition Genes

Inherited cardiac conditions (ICCs) are characterised by marked genetic and allelic heterogeneity and require extensive sequencing for genetic characterisation. We iteratively optimised a targeted gene capture panel for ICCs that includes disease-causing, putatively pathogenic, research and phenocopy genes (n = 174 genes). We achieved high coverage of the target region on both ...

Autologous Mesenchymal Stem Cells Show More Benefit on Systolic Function Compared to Bone Marrow Mononuclear Cells in a Porcine Model of Chronic Myocardial Infarction

Cardiac cell therapy is a strategy to treat patients with chronic myocardial infarction (MI). No consensus exists regarding the optimal cell type. First, a comparison between autologous bone marrow-derived mononuclear cells (BMMNC) and mesenchymal stem cells (MSC) on therapeutic efficacy after MI was performed. Next, the effect of repetitive, NOGA-guided transendocardial injection ...