International Journal of Minerals, Metallurgy, and Materials

http://link.springer.com/journal/12613

List of Papers (Total 33)

Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range

To enhance the microwave absorption performance of silicon carbide nanowires (SiCNWs), SiO2 nanoshells with a thickness of approximately 2 nm and Fe3O4 nanoparticles were grown on the surface of SiCNWs to form SiC@SiO2@Fe3O4 hybrids. The microwave absorption performance of the SiC@SiO2@Fe3O4 hybrids with different thicknesses was investigated in the frequency range from 2 to 18 GHz ...

Carrier transport characteristics of H-terminated diamond films prepared using molecular hydrogen and atomic hydrogen

The H-terminated diamond films, which exhibit high surface conductivity, have been used in high-frequency and high-power electronic devices. In this paper, the surface conductive channel on specimens from the same diamond film was obtained by hydrogen plasma treatment and by heating under a hydrogen atmosphere, respectively, and the surface carrier transport characteristics of both ...

Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material

The Al2O3−(W,Ti)C composites with Ni and Mo additions varying from 0vol% to 12vol% were prepared via hot pressing sintering under 30 MPa. The microstructure was investigated via X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). Mechanical properties such as flexural strength, fracture toughness, and Vickers hardness ...

Simulation of jet-flow solid fraction during spray forming

A numerical model was developed to simulate the jet-flow solid fraction of W18Cr4V high-speed steel during spray forming. The whole model comprises two submodels: one is an individual droplet model, which describes the motion and thermal behaviors of individual droplets on the basis of Newton’s laws of motion and the convection heat transfer mechanism; the other is a droplet ...

Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2–H2O–CO2 system: products, reaction kinetics, and pitting sensitivity

The corrosion behaviors of X52, 3Cr low-alloy steel, and 13Cr stainless steel were investigated in an O2–H2O–CO2 environment at various temperatures and O2–CO2 partial-pressure ratios. The results showed that the corrosion rates of X52, 3Cr, and 13Cr steels increased with increasing temperature. The corrosion rates slowly increased at temperatures less than 100°C and increased ...

Investigation of rheo-diecasting mold filling of semi-solid A380 aluminum alloy slurry

The rheo-diecasting mold filling capacity and the microstructure of the semi-solid A380 aluminum alloy slurry were investigated. The results show that the mold filling capacity was strengthened with increasing pouring temperature or increasing injection pressure. Under certain process parameters, the mold cavity was fully filled. However, the mold filling capacity decreased with ...

Two-stage reduction for the preparation of ferronickel alloy from nickel laterite ore with low Co and high MgO contents

The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction–smelting method. The effects of reduction time, calcination temperature, quantity of reductant and calcium oxide (CaO), and pellet diameter on the reduction ratio of Fe and on the pellet strength were investigated. The results show that, for a ...

Reduction behavior and kinetics of vanadium–titanium sinters under high potential oxygen enriched pulverized coal injection

In this work, the reduction behavior of vanadium–titanium sinters was studied under five different sets of conditions of pulverized coal injection with oxygen enrichment. The modified random pore model was established to analyze the reduction kinetics. The results show that the reduction rate of sinters was accelerated by an increase of CO and H2 contents. Meanwhile, with the ...

Reverse-transformation austenite structure control with micro/nanometer size

To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were ...

Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels

The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth ...

Titanium effect on the microstructure and properties of laminated high boron steel plates

High-boron steel is an important material used for thermal neutron shielding. The appropriate amount of added boron must be determined because excessive boron may deteriorate the steel’s workability. A uniform microstructure can be formed by adding titanium to boron steel. In this study, casting and hot rolling were used to fabricate laminated high-boron steel plates whose cores ...

Microstructure and texture evolution of Mg-3Zn-1Al magnesium alloy during large-strain electroplastic rolling

Large-strain deformation by single electroplastic rolling (EPR) was imposed on AZ31 magnesium alloy strips. During EPR at low temperature (150–250°C), numerous twins formed in the alloy. After EPR at a high temperature (350°C), the number of twins reduced and some dynamic recrystallization (DRX) grains formed at grain boundaries and twinned regions. The synergic thermal and ...

Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char

This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimetric analysis (TGA) at 900, 950, and 1000°C under CO2. With an increase in BC blending ratio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the ...

Investigation on the interface of Cu/Al couples during isothermal heating

The evolutionary process and intermetallic compounds of Cu/Al couples during isothermal heating at a constant bonding temperature of 550°C were investigated in this paper. The interfacial morphologies and microstructures were examined by optical microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, and X-ray diffraction. The results suggest ...

Corrosion behavior of the expandable tubular in formation water

The corrosion behavior of expandable tubular materials was investigated in simulated downhole formation water environments using a series of electrochemical techniques. The corrosion morphologies in the real downhole environment after three months of application were also observed by stereology microscopy and scanning electron microscopy (SEM). The results show that, compared with ...

Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by ...

Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling

High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The ...

Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy

An aluminum alloy (Al-Zn-Mg-Cu) subjected to deep cryogenic treatment (DCT) was systematically investigated. The results show that a DCT-induced phase transformation varies the microstructures and affects the mechanical properties of the Al alloy. Both Guinier-Preston (GP) zones and a metastable η′ phase were observed by high-resolution transmission electron microscopy. The ...

Preparation and characterization of regenerated MgO-CaO refractory bricks sintered under different atmospheres

Regenerated MgO-CaO brick samples containing 80wt%, 70wt%, and 60wt% MgO were prepared using spent MgO-CaO bricks and fused magnesia as raw materials and paraffin as a binder. The bricks were sintered at 1873 K for 2 h under an air atmosphere and under an isolating system. The microstructure, mechanical properties at room temperature, and hydration resistance of the regenerated ...

Effects of magnetic fields on Fe-Si composite electrodeposition

Coatings containing Fe-Si particles were electrodeposited on 3.0wt% Si steel sheets under magnetic fields. The effects of magnetic flux density (MFD), electrode arrangement and current density on the surface morphology, the silicon content in the coatings and the cathode current efficiency were investigated. When a magnetic field was applied parallel to the current and when the MFD ...

Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag

The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace (BF) slag was studied using confocal scanning laser microscopy (CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, ...

Effect of boron addition on the microstructure and stress-rupture properties of directionally solidified superalloys

This study is focused on the effect of boron addition, in the range of 0.0007wt% to 0.03wt%, on the microstructure and stress-rupture properties of a directionally solidified superalloy. With increasing boron content in the as-cast alloys, there is an increase in the fraction of the γ′/γ eutectic and block borides precipitate around the γ′/γ eutectic. At a high boron content of ...

Non-monotonic influence of a magnetic field on the electrochemical behavior of Fe78Si9B13 glassy alloy in NaOH and NaCl solutions

The corrosion behavior and microstructure of Fe78Si9B13 glassy alloy in NaOH and NaCl solutions under a 0.02-T magnetic field were investigated through electrochemical testing and scanning electron microscopy (SEM). The current-density prepeak (PP) in the anodic polarization curves in low-concentration NaOH solutions (classified as type I) tends to disappear when the NaOH ...

Influence of gangue existing states in iron ores on the formation and flow of liquid phase during sintering

Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scanning electron microscopy, the effects of gangue content, gangue type, and gangue size on the assimilation characteristics and fluidity of liquid phase of five different iron ores were analyzed in this study. Next, the mechanism based on the reaction ...