We present a unified evolution of the universe from very early times until the present epoch by including both the leading local correction \(R^2\) and the leading non-local term \(R\frac{1}{\square ^2}R\) to the classical gravitational action. We find that the inflationary phase driven by \(R^2\) term gracefully exits in a transitory regime characterized by coherent oscillations...

From the viewpoint of holography, we study the behaviors of the entanglement entropy in insulator/superconductor transition with exponential nonlinear electrodynamics (ENE). We find that the entanglement entropy is a good probe to the properties of the holographic phase transition. Both in the half space and the belt space, the non-monotonic behavior of the entanglement entropy...

The discovery by the IceCube experiment of a high-energy astrophysical neutrino flux with energies of the order of PeV, has opened new scenarios in astroparticles physics. A possibility to explain this phenomenon is to consider the minimal models of Dark Matter (DM) decay, the 4-dimensional operator \(\sim y_{\alpha \chi }\overline{{L_{L_{\alpha }}}}\, H\, \chi \), which is also...

Weak gravitational lensing by black holes and wormholes in the context of massive gravity (Bebronne and Tinyakov, JHEP 0904:100, 2009) theory is studied. The particular solution examined is characterized by two integration constants, the mass M and an extra parameter S namely ‘scalar charge’. These black hole reduce to the standard Schwarzschild black hole solutions when the...

We consider the effect of the Gibbons–Hawking radiation on the inflaton in the situation where it is coupled to a large number of spectator fields. We argue that this will lead to two important effects – a thermal contribution to the potential and a gradual change in parameters in the Lagrangian which results from thermodynamic and energy conservation arguments. We present a...

Proton–proton (pp) data show collective effects, such as long-range azimuthal correlations and strangeness enhancement, which are similar to phenomenology observed in heavy ion collisions. Using simulations with and without explicit existing models of collective effects, we explore new ways to probe pp collisions at high multiplicity, in order to suggest measurements that could...

We study the thermodynamical features and dynamical evolutions of various apparent horizons associated with the Vaidya evaporating black hole surrounded by the cosmological fields of dust, radiation, quintessence, cosmological constant-like and phantom. In this regard, we address in detail how do these surrounding fields contribute to the characteristic features of a surrounded...

If dark matter is composed of massive bosons, a Bose–Einstein condensation process must have occurred during the cosmological evolution. Therefore galactic dark matter may be in a form of a condensate, characterized by a strong self-interaction. We consider the effects of rotation on the Bose–Einstein condensate dark matter halos, and we investigate how rotation might influence...

We examine an extension of the SM Higgs sector by a Higgs triplet taking into consideration the discovery of a Higgs-like particle at the LHC with mass around 125 GeV. We evaluate the bounds on the scalar potential through the unitarity of the scattering matrix. Considering the cases with and without \(\mathbb {Z}_2\)-symmetry of the extra triplet, we derive constraints on the...

The CP phases associated with the sterile neutrino cannot be measured in the dedicated short-baseline experiments being built to test the sterile neutrino hypothesis. On the other hand, these phases can be measured in long-baseline experiments, even though the main goal of these experiments is not to test or measure sterile neutrino parameters. In particular, the sterile neutrino...

The asymptotic safety scenario in gravity is accessed within the systematic vertex expansion scheme for functional renormalisation group flows put forward in Christiansen et al. (Phys Lett B 728:114, 2014), Christiansen et al. (Phy Rev D 93:044036, 2016), and implemented in Christiansen et al. (Phys Rev D 92:121501, 2015) for propagators and three-point functions. In the present...

We consider the scattering of kinks of the sinh-deformed \(\varphi ^4\) model, which is obtained from the well-known \(\varphi ^4\) model by means of the deformation procedure. Depending on the initial velocity \(v_\mathrm {in}\) of the colliding kinks, different collision scenarios are realized. There is a critical value \(v_\mathrm {cr}\) of the initial velocity, which...

In this paper we consider the warped \(\hbox {AdS}_{3}\) black hole solution of topologically massive gravity with a negative cosmological constant, and we study the possibility that it acts as a particle accelerator by analyzing the energy in the center of mass (CM) frame of two colliding particles in the vicinity of its horizon, which is known as the Bañnados, Silk and West...

A physically realistic stellar model with a simple expression for the energy density and conformally flat interior is found. The relations between the different conditions are used without graphic proofs. It may represent a real pulsar.

We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum at high temperature. We base our analysis on the assumption that, at temperatures much higher than the Hawking temperature, the main effect of the black hole is to distort the Higgs configuration dominating the transition to the new vacuum. We...

We investigate the Gauss–Bonnet dark energy model and its deformed version on Hořava–Lifshitz cosmology, which belongs to the class of cosmologies obtained from the so-called projectable version of Hořava–Lifshitz gravity. In particular, we investigate the bulk/boundary interaction in this scenario through the Q function, which we interpret as a measure of the energy transference...

We predict the sterile neutrino spectrum of some of the key solar nuclear reactions and discuss the possibility of these being observed by the next generation of solar neutrino experiments. By using an up-to-date standard solar model with good agreement with current helioseismology and solar neutrino flux data sets, we found that from solar neutrino fluxes arriving on Earth only...

Higgs pair production is a crucial phenomenological process in deciphering the nature of the TeV scale and the mechanism underlying electroweak symmetry breaking. At the Large Hadron Collider, this process is statistically limited. Pushing the energy frontier beyond the LHC’s reach will create new opportunities to exploit the rich phenomenology at higher centre-of-mass energies...

In this paper, Quasinormal modes of gravitational perturbation are investigated for the regular Bardeen black hole surrounded by quintessence. Considering the metric of the Bardeen spacetime surrounded by quintessence, we derived the perturbation equation for gravitational perturbation using Regge-Wheeler gauge. The third order Wentzel-Kramers-Brillouin (WKB) approximation method...

We present a determination of the parton distribution functions of the proton in which NLO and NNLO fixed-order calculations are supplemented by NLLx small-x resummation. Deep-inelastic structure functions are computed consistently at \(\hbox {NLO+NLL}x\) or \(\hbox {NNLO+NLL}x\), while for hadronic processes small-x resummation is included only in the PDF evolution, with...

Aiming at exploring the nature of dark energy (DE), we use forty-three observational Hubble parameter data (OHD) in the redshift range \(0 < z \leqslant 2.36\) to make a cosmological model-independent test of the \(\varLambda \)CDM model with two-point \(Omh^2(z_{2};z_{1})\) diagnostic. In \(\varLambda \)CDM model, with equation of state (EoS) \(w=-1\), two-point diagnostic...

A cosmological extension of the Eisenhart–Duval metric is constructed by incorporating a cosmic scale factor and the energy-momentum tensor into the scheme. The dynamics of the spacetime is governed by the Ermakov–Milne–Pinney equation. Killing isometries include spatial translations and rotations, Newton–Hooke boosts and translation in the null direction. Geodesic motion in...

We present theoretical predictions for the production of top-quark pairs in association with jets at the LHC including electroweak (EW) corrections. First, we present and compare differential predictions at the fixed-order level for \(t\bar{t}\) and \(t\bar{t}+\text {jet}\) production at the LHC considering the dominant NLO EW corrections of order \({{\mathcal {O}}}(\alpha _...

Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by...