The mass and pole residue of the first orbitally and radially excited \( \Xi \) state as well as the ground state residue are calculated by means of the two-point QCD sum rules. Using the obtained results for the spectroscopic parameters, the strong coupling constants relevant to the decays \(\Xi (1690)\rightarrow \Sigma K\) and \(\Xi (1690) \rightarrow \Lambda K\) are calculated...

We performed Pulse Shape Analysis to separate single-scattered gamma energy deposition events from multiple-scattered photons in a high-sensitivity \(\gamma \)-ray spectrometer. The spectrometer is based on a Broad Energy High Purity Germanium detector and the developed technique uses multivariate analysis by an application of the Multi-Layer Perceptron Neural Network. A very...

We determine from first principles the quark mass anomalous dimension in \(N_{\scriptstyle \mathrm{f}}=3\) QCD between the electroweak and hadronic scales. This allows for a fully non-perturbative connection of the perturbative and non-perturbative regimes of the Standard Model in the hadronic sector. The computation is carried out to high accuracy, employing massless \(\text{ O...

If dark matter is composed of new particles, these may become captured after scattering with nuclei in the Sun, thermalize through additional scattering, and finally annihilate into neutrinos that can be detected on Earth. If dark matter scatters inelastically into a slightly heavier (\({\mathcal {O}} (10-100)\,\hbox {keV}\)) state it is unclear whether thermalization occurs. One...

An anti-de Sitter background four-dimensional type N solution of the Einstein’s field equations, is presented. The matter-energy content pure radiation field satisfies the null energy condition (NEC), and the metric is free-from curvature divergence. In addition, the metric admits a non-expanding, non-twisting and shear-free geodesic null congruence which is not covariantly...

The paper deals with an extensive study of null and timelike geodesics in the background of wormhole geometries. Starting with a spherically symmetric spacetime, null geodesics are analyzed for the Morris–Thorne wormhole (WH) and photon spheres are examined in WH geometries. Both bounded and unbounded orbits are discussed for timelike geodesics. A similar analysis has been done...

Simple generic extensions of isotropic Durgapal–Fuloria stars to the anisotropic domain are presented. These anisotropic solutions are obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors by means of the minimal geometric deformation approach are satisfied...

By applying the Faddeev–Jackiw symplectic approach we systematically show that both the local gauge symmetry and the constraint structure of topologically massive gravity with a cosmological constant \(\Lambda \), elegantly encoded in the zero-modes of the symplectic matrix, can be identified. Thereafter, via a suitable partial gauge-fixing procedure, the time gauge, we calculate...

We analyse the consequences of a new gauge invariant Fayet–Iliopoulos (FI) term proposed recently to a class of inflation models driven by supersymmetry breaking with the inflaton being the superpartner of the goldstino. We first show that charged matter fields can be consistently added with the new term, as well as the standard FI term in supergravity in a Kähler frame where the...

Discovery of X(5568) brings up a tremendous interest because it is very special, i.e. made of four different flavors. The D0 collaboration claimed that they observed this resonance through portal \(X(5568)\rightarrow B_s\pi \), but unfortunately, later the LHCb, CMS, CDF and ATLAS collaborations’ reports indicate that no such state was found. Almost on the Eve of 2017, the D0...

We perform the stability analysis of Schwarzschild-AdS (SAdS) black hole in the Einstein–Ricci cubic gravity. It shows that the Ricci tensor perturbations exhibit unstable modes for small black holes. We call this the mass-induced instability of SAdS black hole because the instability of small black holes arises from the massiveness in the linearized Einstein–Ricci cubic gravity...

A generic expression to compute triple-parton scattering (TPS) cross sections in high-energy proton–nucleus (pA) collisions is derived as a function of the corresponding single-parton cross sections and an effective parameter encoding the transverse parton profile of the proton. The TPS cross sections are enhanced by a factor of about \(9\,A\simeq 2000\) in pPb as compared to...

We present a unified evolution of the universe from very early times until the present epoch by including both the leading local correction \(R^2\) and the leading non-local term \(R\frac{1}{\square ^2}R\) to the classical gravitational action. We find that the inflationary phase driven by \(R^2\) term gracefully exits in a transitory regime characterized by coherent oscillations...

From the viewpoint of holography, we study the behaviors of the entanglement entropy in insulator/superconductor transition with exponential nonlinear electrodynamics (ENE). We find that the entanglement entropy is a good probe to the properties of the holographic phase transition. Both in the half space and the belt space, the non-monotonic behavior of the entanglement entropy...

Treating the light-flavor constituent quarks and antiquarks whose momentum information is extracted from the data of soft light-flavor hadrons in pp collisions at \(\sqrt{s}=7\) TeV as the underlying source of chromatically neutralizing the charm quarks of low transverse momenta (\(p_{T}\)), we show that the experimental data of \(p_{T}\) spectra of single-charm hadrons \(D^{0...

The discovery by the IceCube experiment of a high-energy astrophysical neutrino flux with energies of the order of PeV, has opened new scenarios in astroparticles physics. A possibility to explain this phenomenon is to consider the minimal models of Dark Matter (DM) decay, the 4-dimensional operator \(\sim y_{\alpha \chi }\overline{{L_{L_{\alpha }}}}\, H\, \chi \), which is also...

Weak gravitational lensing by black holes and wormholes in the context of massive gravity (Bebronne and Tinyakov, JHEP 0904:100, 2009) theory is studied. The particular solution examined is characterized by two integration constants, the mass M and an extra parameter S namely ‘scalar charge’. These black hole reduce to the standard Schwarzschild black hole solutions when the...

We consider the effect of the Gibbons–Hawking radiation on the inflaton in the situation where it is coupled to a large number of spectator fields. We argue that this will lead to two important effects – a thermal contribution to the potential and a gradual change in parameters in the Lagrangian which results from thermodynamic and energy conservation arguments. We present a...

Proton–proton (pp) data show collective effects, such as long-range azimuthal correlations and strangeness enhancement, which are similar to phenomenology observed in heavy ion collisions. Using simulations with and without explicit existing models of collective effects, we explore new ways to probe pp collisions at high multiplicity, in order to suggest measurements that could...

We study the scattering of kink and antikink of the double sine-Gordon model. There is a critical value of the initial velocity \(v_{{\mathrm {cr}}}\) of the colliding kinks, which separates different regimes of the collision. At \(v_{\mathrm {in}}>v_{\mathrm {cr}}\) we observe kinks reflection, while at \(v_{\mathrm {in}}<v_{\mathrm {cr}}\) their interaction is complicated with...

We study the thermodynamical features and dynamical evolutions of various apparent horizons associated with the Vaidya evaporating black hole surrounded by the cosmological fields of dust, radiation, quintessence, cosmological constant-like and phantom. In this regard, we address in detail how do these surrounding fields contribute to the characteristic features of a surrounded...

If dark matter is composed of massive bosons, a Bose–Einstein condensation process must have occurred during the cosmological evolution. Therefore galactic dark matter may be in a form of a condensate, characterized by a strong self-interaction. We consider the effects of rotation on the Bose–Einstein condensate dark matter halos, and we investigate how rotation might influence...

We examine an extension of the SM Higgs sector by a Higgs triplet taking into consideration the discovery of a Higgs-like particle at the LHC with mass around 125 GeV. We evaluate the bounds on the scalar potential through the unitarity of the scattering matrix. Considering the cases with and without \(\mathbb {Z}_2\)-symmetry of the extra triplet, we derive constraints on the...