Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory ...

An investigation of the stopping efficiency of fission products, in the new ion guide designed for ion production through neutron-induced fission at IGISOL in Jyväskylä, Finland, has been conducted. Our simulations take into account the new neutron converter, enabling measurements of neutron-induced fission yields, and thereby provide estimates of the obtained yields as a function ...

A potential can have features that do not reflect the dynamics of the system it describes but rather arise from the choice of interpolating fields used to define it. This is illustrated using a toy model of scattering with two coupled channels. A Bethe-Salpeter amplitude is constructed which is a mixture of the waves in the two channels. The potential derived from this has a strong ...

The current work presents the determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method, in combination with spectrometers for ion identification, normalizing the intensity of the peaks by the ions detected in the spectrometer as a valid technique that produces results comparable to the ones obtained by the conventional shifted-to-unsifted ...

Cross sections for neutron interactions with 238U in the energy region from 5keV to 150keV have been evaluated. Average total and capture cross sections have been derived from a least squares analysis using experimental data reported in the literature. The resulting cross sections have been parameterised in terms of average resonance parameters maintaining full consistency with ...

This paper describes a procedure to obtain the general form of the three-nucleon force. The result is an operator form where the momentum space matrix element of the three-nucleon potential is written as a linear combination of 320 isospin-spin-momentum operators and scalar functions of momenta. Any spatial and isospin rotation invariant three-nucleon force can be written in this ...

The scalar glueball spectrum has attracted much attention since the formulation of Quantum Chromodynamics. Different approaches give very different results for the glueball masses. We revisit the problem from the perspective of the AdS/CFT correspondence.

A white neutron source based on the Be(p, nx) reaction for fission studies at the IGISOL-JYFLTRAP facility has been designed and tested. 30MeV protons impinge on a 5mm thick water-cooled beryllium disc. The source was designed to produce at least 1012 fast neutrons/s on a secondary fission target, in order to reach competitive production rates of fission products far from the ...

We report on the investigation of dielectron production in tagged quasi-free neutron-proton collisions by using a deuteron beam of kinetic energy 1.25GeV/u impinging on a liquid hydrogen target. Our measurements with HADES confirm a significant excess of \(e^{+}e^{-}\) pairs above the \(\pi^{0}\) mass in the exclusive channel \(dp \rightarrow npe^{+}e^{-}(p_{spect})\) as compared ...

The production cross sections of isotopically identified residual nuclei of spallation reactions induced by 136Xe projectiles at 500AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of ...

We show that the dominance of prolate over oblate shapes in even-even deformed nuclei can be derived from the SU(3) symmetry and the Pauli principle.

PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the ...

Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally ...

The experimental hadronic physics programme at the COoler SYnchrotron of the Forschungszentrum Jülich terminated at the end of 2014. After describing the accelerator and the associated facilities, a review is presented of the major achievements in the field realized over the twenty years of intense research activity.

With an expected energy of 7.8(5) eV, the isomeric first excited state in 229Th exhibits the lowest excitation energy of all known nuclei. Until today, a value for the excitation energy has been inferred only by indirect measurements. In this paper we propose an experimental method that is potentially capable of measuring the ground-state transition energy via the detection of the ...

In this Letter I argue that the Surrogate Method, used to extract the fast neutron capture cross section on actinide target nuclei, which has important practical application for the next generation of breeder reactors, and the Trojan Horse Method employed to extract reactions of importance to nuclear astrophysics, have a common foundation, the Inclusive Non-Elastic Breakup (INEB) ...

Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden ...

The validity of SU(4)-flavor symmetry relations of couplings of charmed D-mesons to light mesons and baryons is examined with the use of 3 P 0 quark-pair creation model and nonrelativistic quark-model wave functions. We focus on the three-meson couplings \(\pi\pi\rho\), \(KK\rho\) and \(DD\rho\) and baryon-baryon-meson couplings \(NN\pi\), \(N\Lambda K\) and \(N\Lambda_{c} D\). It ...

The neutron capture cross sections of several unstable key isotopes acting as branching points in the s -process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure directly due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual \(({\rm n},\gamma )\) measurement, where high ...

The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, ...

A certain number of yet unknown super- and hyper-deformed shape isomeric states are predicted in even-even nuclei of the region between Pt and Ra, using the macroscopic-microscopic model based on the Lublin Strasbourg Drop for the macroscopic energy and shell plus pairing corrections evaluated through the Yukawa-folded mean-field potential for the microscopic part. A new, rapidly ...