Oil & Gas Science and Technology

https://ogst.ifpenergiesnouvelles.fr/

List of Papers (Total 990)

Enhanced Selectivity of the Separation of CO2 from N2 during Crystallization of Semi-Clathrates from Quaternary Ammonium Solutions

CO2 mitigation is crucial environmental problem and a societal challenge for this century. CO2 capture and sequestration is a route to solve a part of the problem, especially for the industries in which the gases to be treated are well localized. CO2 capture by using hydrate is a process in which the cost of the separation is due to compression of gases to reach the gas hydrate...

CO2 Absorption by Biphasic Solvents: Comparison with Lower Phase Alone

The mixtures of 2 M 1,4-butanediamine (BDA) and 4 M 2-(diethylamino)-ethanol (DEEA) have been found to be promising biphasic solvents. This work identifies the composition of the lower phase using a DX-120 Ion Chromatograph (IC) and a Metrohm 809 Titrando auto titrator. The cyclic capacities, cyclic loadings and reaction products of the biphasic solvent are compared with those of...

Design and Evaluation of Energy Management using Map-Based ECMS for the PHEV Benchmark

Plug-in Hybrid Electric Vehicles (PHEV) provide a promising way of achieving the benefits of the electric vehicle without being limited by the electric range, but they increase the importance of the supervisory control to fully utilize the potential of the powertrain. The winning contribution in the PHEV Benchmark organized by IFP Energies nouvelles is described and evaluated...

Energy Management Strategies for Diesel Hybrid Electric Vehicle

This paper focuses on hybrid energy management for a Diesel Hybrid Electric Vehicle (HEV) with a parallel architecture. The proposed strategy focuses on the reduction of Nitric Oxides (NOx) emissions that represents a key issue to meet diesel emissions standards. The strategy is split in two separated functions aiming at limiting the NOx in steady-state and transient operating...

Investigation of Cycle-to-Cycle Variability of NO in Homogeneous Combustion

Cyclic variability of spark ignition engines is recognized as a scatter in the combustion parameter recordings during actual operation in steady state conditions. Combustion variability may occur due to fluctuations in both early flame kernel development and in turbulent flame propagation with an impact on fuel consumption and emissions. In this study, a detailed chemistry model...

Energy Management of Hybrid Electric Vehicles: 15 years of development at the Ohio State University

The aim of this paper is to document 15 years of hybrid electric vehicle energy management research at The Ohio State University Center for Automotive Research (OSUCAR). Hybrid Electric Vehicle (HEV) technology encompasses many diverse aspects. In this paper we focus exclusively on the evolution of supervisory control strategies for on-board energy management in HEV. We present a...

A Challenging Future for the IC Engine: New Technologies and the Control Role

New regulations on pollutants and, specially, on CO2 emissions could restrict the use of the internal combustion engine in automotive applications. This paper presents a review of different technologies under development for meeting such regulations, ranging from new combustion concepts to advanced boosting methods and after-treatment systems. Many of them need an accurate...

Separation of Binary Mixtures of Propylene and Propane by Facilitated Transport through Silver Incorporated Poly(Ether-Block-Amide) Membranes

The separation of propylene and propane is a challenging task in petroleum refineries due to the similar molecular sizes and physical properties of two gases. Composite Poly(ether-block-amide) (Pebax-1657) membranes incorporated with silver tetra fluoroborate (AgBF4) in concentrations of 0-50% of the polymer weight were prepared by solution casting and solvent evaporation...

Effects of Thermal Treatment and Physical Aging on the Gas Transport Properties in Matrimid®

Carbon dioxide and methane transport in a commercial polyimide, Matrimid 5218®, has been characterized in order to evaluate the effect of membrane thermal treatment and physical aging on its potentialities for CO2/CH4 separation. In particular, CO2 and CH4 permeabilities and diffusion coefficients were measured at three different temperatures (35, 45 and 55°C) in films pretreated...

Comparative TPR and TPD Studies of Cu and Ca Promotion on Fe-Zn- and Fe-Zn-Zr-Based Fischer-Tropsch Catalysts

The present study demonstrates the effect of zirconium promotion on Fe-Zn-based catalysts to boost the active sites of Fischer-Tropsch (FT) catalysts. The catalysts are also promoted by Cu and Ca and the active sites are examined using Temperature-Programmed Reduction (TPR) with H2 and CO and Temperature-Programmed Desorption (TPD) with NH3 and CO2. The results are presented as a...

REALCAT: A New Platform to Bring Catalysis to the Lightspeed

Catalysis, irrespective of its form can be considered as one of the most important pillars of today’s chemical industry. The development of new catalysts with improved performances is therefore a highly strategic issue. However, the a priori theoretical design of the best catalyst for a desired reaction is not yet possible and a time- and money-consuming experimental phase is...

Development of an Innovative XRD-DRIFTS Prototype Allowing Operando Characterizations during Fischer-Tropsch Synthesis over Cobalt-Based Catalysts under Representative Conditions

An original system combining both X-Ray Diffraction and diffuse reflectance infrared Fourier transform spectroscopy was developed with the aim to characterize Fischer-Tropsch catalysts in relevant reaction conditions. The catalytic properties of a model PtCo/silica catalyst tested with this prototype have shown to be in the same range of those obtained in similar conditions with...

CCS Acceptability: Social Site Characterization and Advancing Awareness at Prospective Storage Sites in Poland and Scotland

This paper summarizes the work on the social dimension conducted within the EU FP7 SiteChar project. The most important aim of the research was to advance public awareness and draw lessons for successful public engagement activities when developing a CO2 storage permit application. To this end, social site characterization (e.g. representative surveys) and public participation...

Evaluation and Characterization of a Potential CO2 Storage Site in the South Adriatic Offshore

The Southern Adriatic Sea is one of the five prospective areas for CO2 storage being evaluated under the FP7 European Sitechar project. The potential reservoir identified in the investigated area is represented by a carbonate formation (Scaglia Formation – Late Cretaceous). This paper shows the site characterization applied to one of the structures identified in the carbonate...

The Importance of Baseline Surveys of Near-Surface Gas Geochemistry for CCS Monitoring, as Shown from Onshore Case Studies in Northern and Southern Europe

The monitoring of the integrity of onshore geological carbon capture and storage projects will require an approach that integrates various methods with different spatial and temporal resolutions. One method proven to be quite effective for site assessment, leakage monitoring, and leakage verification is near-surface gas geochemistry, which includes soil gas concentration and gas...

SiteChar – Methodology for a Fit-for-Purpose Assessment of CO2 Storage Sites in Europe

The FP7-funded SiteChar project examined the entire CO2 geological storage site characterisation process, from the initial feasibility studies through to the final stage of application for a CO2 storage permit based on criteria defined by the relevant European legislation. The SiteChar workflow for CO2 geological storage site characterisation provides a description of all...

Prediction of Mass Flow Rate in Supersonic Natural Gas Processing

The mass flow rate of natural gas through the supersonic separator was numerically calculated by various cubic equations of state. The numerical results show that the compressibility factor and specific heat ratio for ideal gas law diverge remarkably from real gas models at a high inlet pressure. Simultaneously, the deviation of mass flow calculated by the ideal and real gas...

A Novel Model of Foam Flooding Considering Multi-Factors for Enhancing Oil Recovery

Foam flooding is a promising technique for achieving mobility control and diverting fluid into low-permeability strata in post-water-flooding reservoirs. However, foam flow is very complicated and is influenced by many factors which have not been studied and explored very rigorously (i.e. permeability, surfactant concentration, foam quality, reservoir temperature, oil saturation...

Influence of Microalgal Bio-Oil on the Lubrication Properties of Engine Oil

In order to accelerate and expand the application of bio-energy, two kinds of microalgal bio-oils, prepared via co-liquefaction of Chlorella and Spirulina under sub- and supercritical ethanol conditions, were used as partial substitutes for the engine oil CD SAE 15W-40. The friction and wear behaviors of the oils were tested on a four-ball tribometer, referring to the ASTM D4172...

A Review of Kinetic Modeling Methodologies for Complex Processes

In this paper, kinetic modeling techniques for complex chemical processes are reviewed. After a brief historical overview of chemical kinetics, an overview is given of the theoretical background of kinetic modeling of elementary steps and of multistep reactions. Classic lumping techniques are introduced and analyzed. Two examples of lumped kinetic models (atmospheric gasoil...

Equivalent Alkane Carbon Number of Live Crude Oil: A Predictive Model Based on Thermodynamics

We took advantage of recently published works and new experimental data to propose a model for the prediction of the Equivalent Alkane Carbon Number of live crude oil (EACNlo) for EOR processes. The model necessitates the a priori knowledge of reservoir pressure and temperature conditions as well as the initial gas to oil ratio. Additionally, some required volumetric properties...

Reservoir Simulator Runtime Enhancement Based on a Posteriori Error Estimation Techniques

In this work, we show how the a posteriori error estimation techniques proposed in [Di Pietro et al. (2014) Computers & Mathematics with Applications 68, 2331-2347] can be efficiently employed to improve the performance of a compositional reservoir simulator dedicated to Enhanced Oil Recovery (EOR) processes. This a posteriori error estimate allows to propose an adaptive mesh...