Brain Structure and Function

http://link.springer.com/journal/429

List of Papers (Total 337)

The cognitive nuances of surprising events: exposure to unexpected stimuli elicits firing variations in neurons of the dorsal CA1 hippocampus

The ability to recognize novel situations is among the most fascinating and vital of the brain functions. A hypothesis posits that encoding of novelty is prompted by failures in expectancy, according to computation matching incoming information with stored events. Thus, unexpected changes in context are detected within the hippocampus and transferred to downstream structures...

Profound seasonal changes in brain size and architecture in the common shrew

The seasonal changes in brain size of some shrews represent the most drastic reversible transformation in the mammalian central nervous system known to date. Brain mass decreases 10–26% from summer to winter and regrows 9–16% in spring, but the underlying structural changes at the cellular level are not yet understood. Here, we describe the volumetric differences in brain...

Molecular composition of the human primary visual cortex profiled by multimodal mass spectrometry imaging

The primary visual cortex (area V1) is an extensively studied part of the cerebral cortex with well-characterized connectivity, cellular and molecular architecture and functions (for recent reviews see Amunts and Zilles, Neuron 88:1086–1107, 2015; Casagrande and Xu, Parallel visual pathways: a comparative perspective. The visual neurosciences, MIT Press, Cambridge, pp 494–506...

Frontal cortical control of posterior sensory and association cortices through the claustrum

The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a...

Is visual activation associated with changes in cerebral high-energy phosphate levels?

Phosphorus magnetic resonance spectroscopy (31P MRS) has been employed before to assess phosphocreatine (PCr) and other high-energy phosphates in the visual cortex during visual stimulation with inconsistent results. We performed functional 31P MRS imaging in the visual cortex and control regions during a visual stimulation paradigm at an unprecedented sensitivity, exploiting a...

Influence of the DRD2/ANKK1 Taq1A polymorphism on caudate volume in older adults without dementia

Dopaminergic neuromodulation is critically important for brain and cognitive integrity. The DRD2/ANKK1 Taq1A polymorphism is associated with striatal dopamine (DA) D2 receptor availability. Some previous studies have found that the A allele of the Taq1A polymorphism influences brain structure, but the results are inconsistent, likely due to population heterogeneity and small...

Grey-matter network disintegration as predictor of cognitive and motor function with aging

Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1...

Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity

Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their...

Functional connectivity of task context representations in prefrontal nodes of the multiple demand network

A subset of regions in the lateral and medial prefrontal cortex and the anterior insula increase their activity level whenever a cognitive task becomes more demanding, regardless of the specific nature of this demand. During execution of a task, these areas and the surrounding cortex temporally encode aspects of the task context in spatially distributed patterns of activity. It...

Substance P-expressing excitatory interneurons in the mouse superficial dorsal horn provide a propriospinal input to the lateral spinal nucleus

The superficial dorsal horn (laminae I and II) of the spinal cord contains numerous excitatory and inhibitory interneurons, and recent studies have shown that each of these groups can be divided into several neurochemically distinct populations. Although it has long been known that some neurons in this region have intersegmental (propriospinal) axonal projections, there have been...

Multiple roles of Sonic Hedgehog in the developing human cortex are suggested by its widespread distribution

Sonic Hedgehog (Shh) plays an instrumental role in brain development, fine-tuning processes such as cell proliferation, patterning, and fate specification. Although, mutations in the SHH pathway in humans are associated with various neurodevelopmental disorders, ranging from holoprosencephaly to schizophrenia, its expression pattern in the developing human brain is not well...

Diffusion MRI-based cortical connectome reconstruction: dependency on tractography procedures and neuroanatomical characteristics

Diffusion MRI (dMRI)-based tractography offers unique abilities to map whole-brain structural connections in human and animal brains. However, dMRI-based tractography indirectly measures white matter tracts, with suboptimal accuracy and reliability. Recently, sophisticated methods including constrained spherical deconvolution (CSD) and global tractography have been developed to...

Complementary expression of calcium binding proteins delineates the functional organization of the locomotor network

Neuronal networks in the spinal cord generate and execute all locomotor-related movements by transforming descending signals from supraspinal areas into appropriate rhythmic activity patterns. In these spinal networks, neurons that arise from the same progenitor domain share similar distribution patterns, neurotransmitter phenotypes, morphological and electrophysiological...

Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T

The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer’s disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of...

Transient and localized optogenetic activation of somatostatin-interneurons in mouse visual cortex abolishes long-term cortical plasticity due to vision loss

Unilateral vision loss through monocular enucleation (ME) results in partial reallocation of visual cortical territory to another sense in adult mice. The functional recovery of the visual cortex occurs through a combination of spared-eye potentiation and cross-modal reactivation driven by whisker-related, somatosensory inputs. Brain region-specific intracortical inhibition was...

Knowing left from right: asymmetric functional connectivity during resting state

The functional organization of left and right hemispheres is different, and hemispheric asymmetries are thought to underlie variations in brain function across individuals. In this study, we assess how differences between hemispheres are reflected in Asymmetric Functional Connectivity (AFC), which provides a full description of how the brain’s connectivity structure during...

Translaminar circuits formed by the pyramidal cells in the superficial layers of cat visual cortex

Pyramidal cells in the superficial layers of the neocortex provide a major excitatory projection to layer 5, which contains the pyramidal cells that project to subcortical motor-related targets. Both structurally and functionally rather little is known about this interlaminar pathway, especially in higher mammals. Here, we made sparse ultrastructural reconstructions of the...

Thalamic interactions of cerebellum and basal ganglia

Cerebellum and basal ganglia are reciprocally interconnected with the neocortex via oligosynaptic loops. The signal pathways of these loops predominantly converge in motor areas of the frontal cortex and are mainly segregated on subcortical level. Recent evidence, however, indicates subcortical interaction of these systems. We have reviewed literature that addresses the question...

A three-dimensional stereotaxic atlas of the gray short-tailed opossum (Monodelphis domestica) brain

The gray short-tailed opossum (Monodelphis domestica) is a small marsupial gaining recognition as a laboratory animal in biomedical research. Despite numerous studies on opossum neuroanatomy, a consistent and comprehensive neuroanatomical reference for this species is still missing. Here we present the first three-dimensional, multimodal atlas of the Monodelphis opossum brain. It...

Complementary research models and methods to study axonal regeneration in the vertebrate retinofugal system

Due to the lack of axonal regeneration, age-related deterioration in the central nervous system (CNS) poses a significant burden on the wellbeing of a growing number of elderly. To overcome this regenerative failure and to improve the patient’s life quality, the search for novel regenerative treatment strategies requires valuable (animal) models and techniques. As an extension of...

Diffusion tractography reveals pervasive asymmetry of cerebral white matter tracts in the bottlenose dolphin (Tursiops truncatus)

Brain enlargement is associated with concomitant growth of interneuronal distance, increased conduction time, and reduced neuronal interconnectivity. Recognition of these functional constraints led to the hypothesis that large-brained mammals should exhibit greater structural and functional brain lateralization. As a taxon with the largest brains in the animal kingdom, Cetacea...

Disentangling brain activity related to the processing of emotional visual information and emotional arousal

Processing of emotional visual information engages cognitive functions and induces arousal. We aimed to examine the modulatory role of emotional valence on brain activations linked to the processing of visual information and those linked to arousal. Participants were scanned and their pupil size was measured while viewing negative and neutral images. The visual noise was added to...

Differential association of GABAB receptors with their effector ion channels in Purkinje cells

Metabotropic GABAB receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABAB receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABAB1 was observed on presynaptic...