Journal of Computer-Aided Molecular Design

http://link.springer.com/journal/10822

List of Papers (Total 125)

Weak interactions in furan dimers

Dimers of furan, 2,3-dihydrofuran, 2,5-dihydrofuran and tetrahydrofuran were investigated with the use of theoretical methods to determine the interactions that keep the molecules together. The QTAIM and NCI methods confirmed that for furan dimers the C–H⋯O hydrogen bond and stacking interactions can form the dimers with similar energy. For 2,3-dihydrofuran, 2,5-dihydrofuran and...

Binding free energies in the SAMPL6 octa-acid host–guest challenge calculated with MM and QM methods

We have estimated free energies for the binding of eight carboxylate ligands to two variants of the octa-acid deep-cavity host in the SAMPL6 blind-test challenge (with or without endo methyl groups on the four upper-rim benzoate groups, OAM and OAH, respectively). We employed free-energy perturbation (FEP) for relative binding energies at the molecular mechanics (MM) and the...

Assessing the stability of free-energy perturbation calculations by performing variations in the method

We have calculated relative binding affinities for eight tetrafluorophenyl-triazole-thiogalactoside inhibitors of galectin-3 with the alchemical free-energy perturbation approach. We obtain a mean absolute deviation from experimental estimates of only 2–3 kJ/mol and a correlation coefficient (R2) of 0.5–0.8 for seven relative affinities spanning a range of up to 11 kJ/mol. We...

Leaving us with fond memories, smiles, SMILES and, alas, tears: a tribute to David Weininger, 1952–2016

David Weininger’s career, accomplishments, genius, and friendship are warmly remembered by several of his colleagues, friends, and admirers.

Modern drug design: the implication of using artificial neuronal networks and multiple molecular dynamic simulations

We report the implementation of molecular modeling approaches developed as a part of the 2016 Grand Challenge 2, the blinded competition of computer aided drug design technologies held by the D3R Drug Design Data Resource (https://​drugdesigndata.​org/​). The challenge was focused on the ligands of the farnesoid X receptor (FXR), a highly flexible nuclear receptor of the...

Impact of domain knowledge on blinded predictions of binding energies by alchemical free energy calculations

The Drug Design Data Resource (D3R) consortium organises blinded challenges to address the latest advances in computational methods for ligand pose prediction, affinity ranking, and free energy calculations. Within the context of the second D3R Grand Challenge several blinded binding free energies predictions were made for two congeneric series of Farsenoid X Receptor (FXR...

Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling

Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods...

Binding free energy predictions of farnesoid X receptor (FXR) agonists using a linear interaction energy (LIE) approach with reliability estimation: application to the D3R Grand Challenge 2

Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and...

Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach

Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands...

Binding affinities of the farnesoid X receptor in the D3R Grand Challenge 2 estimated by free-energy perturbation and docking

We have studied the binding of 102 ligands to the farnesoid X receptor within the D3R Grand Challenge 2016 blind-prediction competition. First, we employed docking with five different docking software and scoring functions. The selected docked poses gave an average root-mean-squared deviation of 4.2 Å. Consensus scoring gave decent results with a Kendall’s τ of 0.26 ± 0.06 and a...

Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models

We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than...

Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2

We present the performance of HADDOCK, our information-driven docking software, in the second edition of the D3R Grand Challenge. In this blind experiment, participants were requested to predict the structures and binding affinities of complexes between the Farnesoid X nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK and ligand-specific...

Molden 2.0: quantum chemistry meets proteins

Since the first distribution of Molden in 1995 and the publication of the first article about this software in 2000 work on Molden has continued relentlessly. A few of the many improved or fully novel features such as improved and broadened support for quantum chemistry calculations, preparation of ligands for use in drug design related softwares, and working with proteins for...

Application of a simple quantum chemical approach to ligand fragment scoring for Trypanosoma brucei pteridine reductase 1 inhibition

There is a need for improved and generally applicable scoring functions for fragment-based approaches to ligand design. Here, we evaluate the performance of a computationally efficient model for inhibitory activity estimation, which is composed only of multipole electrostatic energy and dispersion energy terms that approximate long-range ab initio quantum mechanical interaction...

DFT-based prediction of reactivity of short-chain alcohol dehydrogenase

The reaction mechanism of ketone reduction by short chain dehydrogenase/reductase, (S)-1-phenylethanol dehydrogenase from Aromatoleum aromaticum, was studied with DFT methods using cluster model approach. The characteristics of the hydride transfer process were investigated based on reaction of acetophenone and its eight structural analogues. The results confirmed previously...

Structure based classification for bile salt export pump (BSEP) inhibitors using comparative structural modeling of human BSEP

The bile salt export pump (BSEP) actively transports conjugated monovalent bile acids from the hepatocytes into the bile. This facilitates the formation of micelles and promotes digestion and absorption of dietary fat. Inhibition of BSEP leads to decreased bile flow and accumulation of cytotoxic bile salts in the liver. A number of compounds have been identified to interact with...

Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins

The focus of the computational structural biology community has taken a dramatic shift over the past one-and-a-half decades from the classical protein structure prediction problem to the possible understanding of intrinsically disordered proteins (IDP) or proteins containing regions of disorder (IDPR). The current interest lies in the unraveling of a disorder-to-order...

ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs

We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on...

Bayesian molecular design with a chemical language model

The aim of computational molecular design is the identification of promising hypothetical molecules with a predefined set of desired properties. We address the issue of accelerating the material discovery with state-of-the-art machine learning techniques. The method involves two different types of prediction; the forward and backward predictions. The objective of the forward...

A CADD-alog of strategies in pharma

A special issue on computer-aided drug design (CADD) strategies in pharma discusses how CADD groups in different environments work. Perspectives were collected from authors in 11 organizations: four big pharmaceutical companies, one major biotechnology company, one smaller biotech, one private pharmaceutical company, two contract research organizations (CROs), one university, and...

Empowering pharmacoinformatics by linked life science data

With the public availability of large data sources such as ChEMBLdb and the Open PHACTS Discovery Platform, retrieval of data sets for certain protein targets of interest with consistent assay conditions is no longer a time consuming process. Especially the use of workflow engines such as KNIME or Pipeline Pilot allows complex queries and enables to simultaneously search for...

Blinded predictions of distribution coefficients in the SAMPL5 challenge

In the context of the SAMPL5 challenge water-cyclohexane distribution coefficients for 53 drug-like molecules were predicted. Four different models based on molecular dynamics free energy calculations were tested. All models initially assumed only one chemical state present in aqueous or organic phases. Model A is based on results from an alchemical annihilation scheme; model B...

In search of novel ligands using a structure-based approach: a case study on the adenosine A2A receptor

In this work, we present a case study to explore the challenges associated with finding novel molecules for a receptor that has been studied in depth and has a wealth of chemical information available. Specifically, we apply a previously described protocol that incorporates explicit water molecules in the ligand binding site to prospectively screen over 2.5 million drug-like and...