International Journal of Concrete Structures and Materials

http://link.springer.com/journal/40069

List of Papers (Total 211)

A Study on Mechanical Properties of Porous Concrete Using Cementless Binder

This study evaluated the mechanical characteristics and durability of porous concrete produced with a cementless binder based on ground granulated blast furnace slag (BFS), fly ash (FA) and flue gas desulfurization gypsum (CP). As a result, the void ratio was increased slightly from the target void ratio, by 1.12–1.42 %. Through evaluating the compressive strength, it was found ...

Effect of Wall Thickness on Thermal Behaviors of RC Walls Under Fire Conditions

The objective of this paper is to investigate the effect of thickness and moisture on temperature distributions of reinforced concrete walls under fire conditions. Toward this goal, the first three wall specimens having different thicknesses are heated for 2 h according to ISO standard heating curve and the temperature distribution through the wall thickness is measured. Since the ...

Mechanical Properties of Energy Efficient Concretes Made with Binary, Ternary, and Quaternary Cementitious Blends of Fly Ash, Blast Furnace Slag, and Silica Fume

When the energy performance of concrete is substantially higher than that of normal type concrete, such concrete is regarded as energy efficient concrete (WBSCSD 2009). An experimental study was conducted to investigate mechanical properties of energy efficient concrete with binary, ternary and quaternary admixture at different curing ages. Slump test for workability and air ...

Structural Performance Evaluation of a Precast PSC Curved Girder Bridge Constructed Using Multi-Tasking Formwork

Recently, advanced transit systems are being constructed to reduce traffic congestions in metropolitan areas. For these projects, curved bridges with various curvatures are required. Many curved bridges in the past were constructed using aesthetically unpleasant straight beams with curved slabs or expensive curved steel box girders with curved slabs. Therefore, many recent studies ...

Shear Deformation of Steel Fiber-Reinforced Prestressed Concrete Beams

Steel fiber-reinforced prestressed concrete (SFRPSC) members typically have high shear strength and deformation capability, compared to conventional prestressed concrete (PSC) members, due to the resistance provided by steel fibers at the crack surface after the onset of diagonal cracking. In this study, shear tests were conducted on the SFRPSC members with the test variables of ...

Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges

In this study, an extensive literature review has been conducted on the material characterization of UHPC and its potential for large-scale field applicability. The successful production of ultra-high performance concrete (UHPC) depends on its material ingredients and mixture proportioning, which leads to denser and relatively more homogenous particle packing. A database was ...

Optimization of Curing Regimes for Precast Prestressed Members with Early-Strength Concrete

Early-strength-concrete (ESC) made of Type I cement with a high Blaine value of 500 m2/kg reaches approximately 60 % of its compressive strength in 1 day at ambient temperature. Based on the 210 compressive test results, a generalized rate-constant material model was presented to predict the development of compressive strengths of ESC at different equivalent ages (9, 12, 18, 24, ...

Mechanical Performance and Stress–Strain Relationships for Grouted Splices Under Tensile and Cyclic Loadings

Experimental studies were conducted on 36 grouted splices to investigate their mechanical performance under four loading schemes: (1) incremental tensile loading, (2) repeated tensile loading, (3) cyclic loading at high stress, and (4) cyclic loading at large strain. Load-deformation responses of the grouted splices under cyclic loadings were featured with pinching effect and ...

Viscoelastic Properties of Fresh Cement Paste to Study the Flow Behavior

During concrete pumping, the migration and redistribution of particles occur in a pipe and the lubrication layer that forms between the bulk concrete and the pipe wall is the governing factor determining the flow behavior. In order to identify flow behavior of pumping, in this study, the viscoelastic properties related to the microstructural behavior of a flocculated suspension ...

Control of Tensile Behavior of Ultra-High Performance Concrete Through Artificial Flaws and Fiber Hybridization

Ultra-high performance concrete (UHPC) is one of the most promising construction materials because it exhibits high performance, such as through high strength, high durability, and proper rheological properties. However, it has low tensile ductility compared with other normal strength grade high ductile fiber-reinforced cementitious composites. This paper presents an experimental ...

Numerical Assessment of Reinforcing Details in Beam-Column Joints on Blast Resistance

This numerical study investigated the effects of different reinforcing details in beam-column joints on the blast resistance of the joints. Due to increasing manmade and/or natural high rate accidents such as impacts and blasts, the resistance of critical civil and military infrastructure or buildings should be sufficiently obtained under those high rate catastrophic loads. The ...

State of the Art on Prediction of Concrete Pumping

Large scale constructions needs to estimate a possibility for pumping concrete. In this paper, the state of the art on prediction of concrete pumping including analytical and experimental works is presented. The existing methods to measure the rheological properties of slip layer (or called lubricating layer) are first introduced. Second, based on the rheological properties of slip ...

Simulation of Prestressed Steel Fiber Concrete Beams Subjected to Shear

This paper developed an analytical software, called Simulation of Concrete Structures (SCS), which is used for numerical analysis of shear-critical prestressed steel fiber concrete structures. Based on the previous research at the University of Houston (UH), SCS has been derived from an object-oriented software framework called Open System for Earthquake Engineering Simulation ...

Evaluation of Bond Properties of Reinforced Concrete with Corroded Reinforcement by Uniaxial Tension Testing

The degradation of the load-bearing capacity of reinforced concrete beams due to corrosion has a profoundly negative impact on the structural safety and integrity of a structure. The literature is limited with regard to models of bond characteristics that relate to the reinforcement corrosion percentage. In this study, uniaxial tensile tests were conducted on specimens with ...

Mechanical Properties and Modeling of Amorphous Metallic Fiber-Reinforced Concrete in Compression

The aim of this paper is to investigate the compressive behavior and characteristics of amorphous metallic fiber-reinforced concrete (AMFRC). Compressive tests were carried out for two primary parameters: fiber volume fractions (V f ) of 0, 0.3, 0.6 and 0.8 %; and design compressive strengths of 27, 35, and 50 MPa at the age of 28 days. Test results indicated that the addition of ...

Seismic Analysis on Recycled Aggregate Concrete Frame Considering Strain Rate Effect

The nonlinear behaviors of recycled aggregate concrete (RAC) frame structure are investigated by numerical simulation method with 3-D finite fiber elements. The dynamic characteristics and the seismic performance of the RAC frame structure are analyzed and validated with the shaking table test results. Specifically, the natural frequency and the typical responses (e.g., storey ...

Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement

This paper studies the effects of steel fibre geometry and architecture on the cracking behaviour of steel fibre reinforced concrete (SFRC), with the reinforcements being four types, namely 5DH (Dramix® hooked-end), 4DH, 3DH-60 and 3DH-35, of various hooked-end steel fibres at the fibre dosage of 40 and 80 kg/m3. The test results show that the addition of steel fibres have little ...

Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement

One of the primary concerns about the design aspects is that how to deal with the shear reinforcement in the ultra-high performance fiber reinforced concrete (UHPFRC) beam. This study aims to investigate the shear behavior of UHPFRC rectangular cross sectional beams with fiber volume fraction of 1.5 % considering a spacing of shear reinforcement. Shear tests for simply supported ...

Utilization of Waste Glass Micro-particles in Producing Self-Consolidating Concrete Mixtures

The successful completion of the present research would be achieved using ground waste glass (GWG) microparticles in self-consolidating concrete (SCC). Here, the influences of GWG microparticles as cementing material on mechanical and durability response properties of SCC are investigated. The aim of this study is to investigate the hardened mechanical properties, percentage of ...

Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars

This paper deals with the effects of silica fume content and polymer-binder ratio on the properties of ultrarapid-hardening polymer-modified mortar using silica fume and ethylene-vinyl acetate redispersible polymer powder instead of styrene-butadiene rubber latex to shorten the hardening time. The ultrarapid-hardening polymer-modified mortar was prepared with various silica fume ...

Modeling of Compressive Strength Development of High-Early-Strength-Concrete at Different Curing Temperatures

High-early-strength-concrete (HESC) made of Type III cement reaches approximately 50–70 % of its design compressive strength in a day in ambient conditions. Experimental investigations were made in this study to observe the effects of temperature, curing time and concrete strength on the accelerated development of compressive strength in HESC. A total of 210 HESC cylinders of 100 × ...

Review of Design Flexural Strengths of Steel–Concrete Composite Beams for Building Structures

Recently, as the use of high-performance materials and complex composite methods has increased, the need for advanced design specifications for steel–concrete composite structures has grown. In this study, various design provisions for ultimate flexural strengths of composite beams were reviewed. Design provisions reviewed included the load and resistance factor design method of ...

Computing the Refined Compression Field Theory

In recent years, some modifications were introduced in the stress–strain relationship of the steel in order to develop a more efficient shear model for reinforced concrete members. The last contribution in this sense corresponding to the Refined Compression Field Theory (RCFT, 2009); this theory proposed a steel constitutive model that has account the tension stiffening area ...

A Review on Structural Behavior, Design, and Application of Ultra-High-Performance Fiber-Reinforced Concrete

An overall review of the structural behaviors of ultra-high-performance fiber-reinforced concrete (UHPFRC) elements subjected to various loading conditions needs to be conducted to prevent duplicate research and to promote its practical applications. Thus, in this study, the behavior of various UHPFRC structures under different loading conditions, such as flexure, shear, torsion, ...

Seismic Behavior Factors of RC Staggered Wall Buildings

In this study seismic performance of reinforced concrete staggered wall system structures were investigated and their behavior factors such as overstrength factors, ductility factors, and the response modification factors were evaluated from the overstrength and ductility factors. To this end, 5, 9, 15, and 25-story staggered wall system (SWS) structures were designed and were ...