Biophysical Reviews

http://link.springer.com/journal/12551

List of Papers (Total 71)

Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins

Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt ...

Single-molecule fluorescence-based analysis of protein conformation, interaction, and oligomerization in cellular systems

Single-molecule imaging (SMI) of proteins in operation has a history of intensive investigations over 20 years and is now widely used in various fields of biology and biotechnology. We review the recent advances in SMI of fluorescently-tagged proteins in structural biology, focusing on technical applicability of SMI to the measurements in living cells. Basic technologies and recent ...

Anaerobic crystallization of proteins

Crystallization has been a bottleneck in the X-ray crystallography of proteins. Although many techniques have been developed to overcome this obstacle, the impurities caused by chemical reactions during crystallization have not been sufficiently considered. Oxidation of proteins, which can lead to poor reproducibility of the crystallization, is a prominent example. Protein ...

Statistical description of the denatured structure of a single protein, staphylococcal nuclease, by FRET analysis

Structural characterization of fully unfolded proteins is essential for understanding not only protein-folding mechanisms, but also the structures of intrinsically disordered proteins. Because an unfolded protein can assume all possible conformations, statistical descriptions of its structure are most appropriate. For this purpose, we applied Förster resonance energy transfer ...

Correction to: New perspectives in nanotherapeutics for chronic respiratory diseases

The original version of this article unfortunately contains an error. The third author’s name “Patricia Rieken Macedo Rocco” was incorrectly spelled with “Roccco”. The correct author name is now presented in the authorgroup.

Evolutionary dynamics in the fungal polarization network, a mechanistic perspective

Polarity establishment underlies proper cell cycle completion across virtually all organisms. Much progress has been made in generating an understanding of the structural and functional components of this process, especially in model species. Here we focus on the evolutionary dynamics of the fungal polarization protein network in order to determine general components and ...

Monomer-dependent secondary nucleation in amyloid formation

Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous ...

Nuclear envelope: a new frontier in plant mechanosensing?

In animals, it is now well established that forces applied at the cell surface are propagated through the cytoskeleton to the nucleus, leading to deformations of the nuclear structure and, potentially, to modification of gene expression. Consistently, altered nuclear mechanics has been related to many genetic disorders, such as muscular dystrophy, cardiomyopathy and progeria. In ...

Alternative reagents to antibodies in imaging applications

Antibodies have been indispensable tools in molecular biology, biochemistry and medical research. However, a number of issues surrounding validation, specificity and batch variation of commercially available antibodies have prompted research groups to develop novel non-antibody binding reagents. The ability to select highly specific monoclonal non-antibody binding proteins without ...

Advances in the development of improved animal-free models for use in breast cancer biomedical research

Through translational research, the outcomes for women (and men) diagnosed with breast cancer have improved significantly, with now over 80% of women surviving for at least 5 years post-diagnosis. Much of this success has been translated from the bench to the bedside using laboratory models. Here, we outline the types of laboratory models that have helped achieve this and discuss ...

Complex biomembrane mimetics on the sub-nanometer scale

Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain-forming lipid mixtures to asymmetric lipid bilayers. Here, we review recent progress in the development and application of elastic neutron and X-ray ...

Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light

The sarcomere is an exquisitely designed apparatus that is capable of generating force, which in the case of the heart results in the pumping of blood throughout the body. At the molecular level, an ATP-dependent interaction of myosin with actin drives the contraction and force generation of the sarcomere. Over the past six decades, work on muscle has yielded tremendous insights ...

Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation

Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer’s disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which ...

The Frank–Starling Law: a jigsaw of titin proportions

The Frank–Starling Law dictates that the heart is able to match ejection to the dynamic changes occurring during cardiac filling, hence efficiently regulating isovolumetric contraction and shortening. In the last four decades, efforts have been made to identify a common fundamental basis for the Frank–Starling heart that can explain the direct relationship between muscle ...

Obscurin variants and inherited cardiomyopathies

The inherited cardiomyopathies, hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) and left ventricular non-compaction (LVNC), have been frequently associated with mutations in sarcomeric proteins. In recent years, advances in DNA sequencing technology has allowed the study of the giant proteins of the sarcomere, such as titin and nebulin. Obscurin has been somewhat ...

Genetic epidemiology of titin-truncating variants in the etiology of dilated cardiomyopathy

Heart failure (HF) is a complex clinical syndrome defined by the inability of the heart to pump enough blood to meet the body’s metabolic demands. Major causes of HF are cardiomyopathies (diseases of the myocardium associated with mechanical and/or electrical dysfunction), among which the most common form is dilated cardiomyopathy (DCM). DCM is defined by ventricular chamber ...

Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes

Reversible post-translational modifications of various cardiac proteins regulate the mechanical properties of the cardiomyocytes and thus modulate the contractile performance of the heart. The giant protein titin forms a continuous filament network in the sarcomeres of striated muscle cells, where it determines passive tension development and modulates active contraction. These ...

Essential role of long non-coding RNAs in de novo chromatin modifications: the genomic address code hypothesis

The epigenome, i.e., the whole of chromatin modifications, is transferred from mother to daughter cells during cell differentiation. When de novo chromatin modifications (establishment or erasure of, respectively, new or pre-existing DNA methylations and/or histone modifications) are made in a daughter cell, however, it has a different epigenome than its mother cell. Although de ...

FRET from single to multiplexed signaling events

Förster resonance energy transfer (FRET) is a powerful tool for the visualization of molecular signaling events such as protein activities and interactions in cells. In its different implementations, FRET microscopy has been mainly used for monitoring single events. Recently, there has been a trend of extending FRET imaging towards the simultaneous detection of multiple events and ...