Biophysical Reviews

https://link.springer.com/journal/12551

List of Papers (Total 316)

Editors’ roundup: April 2023

The IUPAB Biophysical Reviews journal provides a regular forum, known as the “Editors’ Roundup,” that is available to editorial board members of any biophysics-related journal to contribute a personal recommendation of articles appearing within their publications. This latest Issue of the Editors’ Roundup carries recommendations from editorial board members associated with the...

Raman spectroscopy for viral diagnostics

Raman spectroscopy offers the potential for fingerprinting biological molecules at ultra-low concentration and therefore has potential for the detection of viruses. Here we review various Raman techniques employed for the investigation of viruses. Different Raman techniques are discussed including conventional Raman spectroscopy, surface-enhanced Raman spectroscopy, Raman tweezer...

Neurodevelopmental disorders, like cancer, are connected to impaired chromatin remodelers, PI3K/mTOR, and PAK1-regulated MAPK

Neurodevelopmental disorders (NDDs) and cancer share proteins, pathways, and mutations. Their clinical symptoms are different. However, individuals with NDDs have higher probabilities of eventually developing cancer. Here, we review the literature and ask how the shared features can lead to different medical conditions and why having an NDD first can increase the chances of...

Biophysical Reviews: Turning the page from 2022 to 2023

This Editorial (vol. 15 issue 1—Regular Issue featuring an Issue Focus on the “100th Anniversary of Har Gobind Khorana”) first describes the issue contents before providing both, a look back at some journal highlights from 2022, and a look forward to what we can expect from 2023. The Editorial closes with a roundup of new journal access features and an acknowledgement of those...

Gobind: an inspiring enigma

Gobind Khorana’s distinguished career spanned nearly six decades (1952–2011). His work resulted in remarkable achievements starting with the complicated synthesis of coenzyme A. He then pioneered the synthesis of DNA oligonucleotides, which enabled him to crack the genetic code. Using this experience, he ventured to accomplish the first complete synthesis of a gene. Not satisfied...

My remembrances of H.G. Khorana: exploring the mechanism of bacteriorhodopsin with site-directed mutagenesis and FTIR difference spectroscopy

H.G. Khorana’s seminal contributions to molecular biology are well-known. He also had a lesser known but still major influence on current application of advanced vibrational spectroscopic techniques such as FTIR difference spectroscopy to explore the mechanism of bacteriorhodopsin and other integral membrane proteins. In this review, I provide a personal perspective of my...

Second harmonic generation microscopy: a powerful tool for bio-imaging

Second harmonic generation (SHG) microscopy is an important optical imaging technique in a variety of applications. This article describes the history and physical principles of SHG microscopy and its more advanced variants, as well as their strengths and weaknesses in biomedical applications. It also provides an overview of SHG and advanced SHG imaging in neuroscience and...

Expression systems for bovine rhodopsin: a review of the progress made in the Khorana laboratory

Here I will review the development of gene expression systems for production of bovine rhodopsin in the Khorana laboratory with particular focus on stable mammalian cell lines made using human embryonic kidney cells (HEK293S). The synthesis of a gene encoding bovine rhodopsin was completed in 1986. This gene was expertly designed with the built-in capacity for DNA duplex cassette...

Quantum chemical studies on hydrogen bonds in helical secondary structures

We present a brief review of our recent computational studies of hydrogen bonds (H-bonds) in helical secondary structures of proteins, α-helix and 310-helix, using a Negative Fragmentation Approach with density functional theory. We found that the depolarized electronic structures of the carbonyl oxygen of the ith residue and the amide hydrogen of the (i + 4)th residue cause...

Computational biophysics and structural biology of proteins—a Special Issue in honor of Prof. Haruki Nakamura’s 70th birthday

Receiving his initial training jointly in theoretical and applied physics at the University of Tokyo, Professor Haruki Nakamura has had a long and eventful scientific career, along the way helping to shape the way that biophysics is carried out in Japan. Concentrating his research efforts on the simulation of protein structure and function, he has, over his career arc, acted as...

Recent developments of sequence-based prediction of protein–protein interactions

The identification of protein–protein interactions (PPIs) can lead to a better understanding of cellular functions and biological processes of proteins and contribute to the design of drugs to target disease-causing PPIs. In addition, targeting host–pathogen PPIs is useful for elucidating infection mechanisms. Although several experimental methods have been used to identify PPIs...

A fortunate period of overlap with Prof. Haruki Nakamura

The author recounts a period of overlap with Prof. Haruki Nakamura that stretched from 2007 till the present day. Starting as a short-term research fellow in his laboratory, the author has also been a coauthor, academic colleague, and joint journal editorial board member of Prof. Nakamura.

Protein–protein interaction prediction methods: from docking-based to AI-based approaches

Protein–protein interactions (PPIs), such as protein–protein inhibitor, antibody–antigen complex, and supercomplexes play diverse and important roles in cells. Recent advances in structural analysis methods, including cryo-EM, for the determination of protein complex structures are remarkable. Nevertheless, much room remains for improvement and utilization of computational...

The evolution of structural genomics

Structural genomics began as a global effort in the 1990s to determine the tertiary structures of all protein families as a response to large-scale genome sequencing projects. The immediate outcome was an influx of tens of thousands of protein structures, many of which had unknown functions. At the time, the value of structural genomics was controversial. However, the structures...

Use of multistate Bennett acceptance ratio method for free-energy calculations from enhanced sampling and free-energy perturbation

Multistate Bennett acceptance ratio (MBAR) works as a method to analyze molecular dynamics (MD) simulation data after the simulations have been finished. It is widely used to estimate free-energy changes between different states and averaged properties at the states of interest. MBAR allows us to treat a wide range of states from those at different temperature/pressure to those...

History of Protein Data Bank Japan: standing at the beginning of the age of structural genomics

Prof. Haruki Nakamura, who is the former head of Protein Data Bank Japan (PDBj) and an expert in computational biology, retired from Osaka University at the end of March 2018. He founded PDBj at the Institute for Protein Research, together with other faculty members, researchers, engineers, and annotators in 2000, and subsequently established the worldwide Protein Data Bank...

Protein binding sites for drug design

Drug development is a lengthy and challenging process that can be accelerated at early stages by new mathematical approaches and modern computers. To address this important issue, we are developing new mathematical solutions for the detection and characterization of protein binding sites that are important for new drug development. In this review, we present algorithms based on...

Using mechanism similarity to understand enzyme evolution

Enzyme reactions take place in the active site through a series of catalytic steps, which are collectively termed the enzyme mechanism. The catalytic step is thereby the individual unit to consider for the purposes of building new enzyme mechanisms — i.e. through the mix and match of individual catalytic steps, new enzyme mechanisms and reactions can be conceived. In the case of...

Functional dynamics of SARS-CoV-2 3C-like protease as a member of clan PA

SARS-CoV-2 3C-like protease (3CLpro), a potential therapeutic target for COVID-19, consists of a chymotrypsin fold and a C-terminal α-helical domain (domain III), the latter of which mediates dimerization required for catalytic activation. To gain further understanding of the functional dynamics of SARS-CoV-2 3CLpro, this review extends the scope to the comparative study of many...

Electron microscopy holdings of the Protein Data Bank: the impact of the resolution revolution, new validation tools, and implications for the future

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) “Resolution Revolution” made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at...