Molecular Imaging and Biology

https://link.springer.com/journal/11307

List of Papers (Total 414)

New Horizons in Hyperpolarized 13C MRI

Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical...

Development, Characterization, and Radiation Dosimetry Studies of 18F-BMS-986229, a 18F-Labeled PD-L1 Macrocyclic Peptide PET Tracer

In cancer immunotherapy, the blockade of the interaction between programmed death-1 and its ligand (PD-1:PD-L1) has proven to be one of the most promising strategies. However, as mechanisms of resistance to PD-1/PD-L1 inhibition include variability in tumor cell PD-L1 expression in addition to standard tumor biopsy PD-L1 immunohistochemistry (IHC), a comprehensive and...

Detection of Intestinal Inflammation by Vascular Adhesion Protein-1-Targeted [68Ga]Ga-DOTA-Siglec-9 Positron Emission Tomography in Murine Models of Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) can be imaged with positron emission tomography (PET), but existing PET radiopharmaceuticals have limited diagnostic accuracy. Vascular adhesion protein-1 (VAP-1) is an endothelial cell surface molecule that controls leukocyte extravasation into sites of inflammation. However, the role of inflammation-induced VAP-1 expression in IBD is still...

Evaluation and Application of a PET Tracer in Preclinical and Phase 1 Studies to Determine the Brain Biodistribution of Minzasolmin (UCB0599)

Minzasolmin (UCB0599) is an orally administered, small molecule inhibitor of ASYN misfolding in development as a potential disease-modifying therapy for Parkinson’s disease. Here we describe the preclinical development of a radiolabeled tracer and results from a phase 1 study using the tracer to investigate the brain distribution of minzasolmin. In the preclinical study, two...

The Theranostic Optimization of PSMA-GCK01 Does Not Compromise the Imaging Characteristics of [99mTc]Tc-PSMA-GCK01 Compared to Dedicated Diagnostic [99mTc]Tc-EDDA/HYNIC-iPSMA in Prostate Cancer

Radiolabeled PSMA-ligands play a major role in today’s nuclear medicine. Since approval of [177Lu]Lu-PSMA-617 for therapy of metastatic prostate cancer, availability of 177Lu became bottleneck of supply due to the high demand. Recently, a theranostic PSMA-ligand, PSMA-GCK01, was developed which can be labeled either diagnostically with 99mTc or therapeutically with 188Re with...

Electron Spin Resonance Probe Incorporation into Bioinks Permits Longitudinal Oxygen Imaging of Bioprinted Constructs

Bioprinting is an additive manufacturing technology analogous to 3D printing. Instead of plastic or resin, cell-laden hydrogels are used to produce a construct of the intended biological structure. Over time, cells transform this construct into a functioning tissue or organ. The process of printing followed by tissue maturation is referred to as 4D bioprinting. The fourth...

Quantitative and Qualitative Assessment of Urinary Activity of 18F-Flotufolastat-PET/CT in Patients with Prostate Cancer: a Post Hoc Analysis of the LIGHTHOUSE and SPOTLIGHT Studies

To evaluate the impact of urinary activity on interpretation of 18F-flotufolastat (18F-rhPSMA-7.3) PET/CT, we conducted a post hoc qualitative and quantitative analysis of scans acquired in two phase 3 studies of 18F-flotufolastat. Newly diagnosed or recurrent prostate cancer patients enrolled in LIGHTHOUSE (NCT04186819) or SPOTLIGHT (NCT04186845), respectively, underwent PET/CT...

Sub-Chronic Ketamine Administration Increases Dopamine Synthesis Capacity in the Mouse Midbrain: a Preclinical In Vivo PET Study

There is robust evidence that people with schizophrenia show elevated dopamine (DA) synthesis capacity in the striatum. This finding comes from positron emission tomography (PET) studies using radiolabelled l-3,4-dihydroxyphenylalanine (18F-DOPA). DA synthesis capacity also appears to be elevated in the midbrain of people with schizophrenia compared to healthy controls. We...

Assessment of Brain Tumour Perfusion Using Early-Phase 18F-FET PET: Comparison with Perfusion-Weighted MRI

Morphological imaging using MRI is essential for brain tumour diagnostics. Dynamic susceptibility contrast (DSC) perfusion-weighted MRI (PWI), as well as amino acid PET, may provide additional information in ambiguous cases. Since PWI is often unavailable in patients referred for amino acid PET, we explored whether maps of relative cerebral blood volume (rCBV) in brain tumours...

Pulse and CW EPR Oximetry Using Oxychip in Gemcitabine-Treated Murine Pancreatic Tumors

The goal of this work was to compare pO2 measured using both continuous wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopy. The Oxychip particle spin probe enabled longitudinal monitoring of pO2 in murine pancreatic tumor treated with gemcitabine during the course of therapy. Pancreatic PanO2 tumors were growing in the syngeneic mice, in the leg. Five doses of...

Urokinase-Type Plasminogen Activator Receptor (uPAR) Expression and [64Cu]Cu-DOTA-AE105 uPAR-PET/CT in Patient-Derived Xenograft Models of Oral Squamous Cell Carcinoma

[64Cu]Cu-DOTA-AE105 urokinase-type plasminogen activator receptor (uPAR)-PET/CT is a novel and promising imaging modality for cancer visualization, although it has not been tested in head and neck cancer patients nor in preclinical models that closely resemble these heterogenous tumors, i.e., patient-derived xenograft (PDX) models. The aim of the present study was to establish...

The Balance Between the Therapeutic Efficacy and Safety of [177Lu]Lu-NeoB in a Preclinical Prostate Cancer Model

Radiolabeled NeoB is a promising gastrin-releasing peptide receptor (GRPR)–targeting radiopharmaceutical for theranostics of GRPR-expressing malignancies, e.g., prostate cancer (PCa). The aim of this study was to evaluate the effect of different doses of [177Lu]Lu-NeoB on the balance between therapeutic efficacy and safety in a preclinical PCa model. To determine the efficacy of...

A Novel Near-Infrared Fluorescence Probe THK-565 Enables In Vivo Detection of Amyloid Deposits in Alzheimer’s Disease Mouse Model

Noninvasive imaging of protein aggregates in the brain is critical for the early diagnosis, disease monitoring, and evaluation of the effectiveness of novel therapies for Alzheimer’s disease (AD). Near-infrared fluorescence (NIRF) imaging with specific probes is a promising technique for the in vivo detection of protein deposits without radiation exposure. Comprehensive screening...

Neurotoxin-Derived Optical Probes for Biological and Medical Imaging

The superb specificity and potency of biological toxins targeting various ion channels and receptors are of major interest for the delivery of therapeutics to distinct cell types and subcellular compartments. Fused with reporter proteins or labelled with fluorophores and nanocomposites, animal toxins and their detoxified variants also offer expanding opportunities for...

Bone Turnover in Patients with Chronic Kidney Disease Stage 5D and Healthy Controls — a Quantitative [18F]Fluoride PET Study

Chronic kidney disease (CKD) is prevalent in the aging population and increases the risk of fracture 2–4 times. We compared optimized quantitative [18F]fluoride PET/CT methods to the reference standard with arterial input function (AIF) to identify a clinically accessible method for evaluation of bone turnover in patients with CKD. Ten patients on chronic hemodialysis treatment...

Detection of Endometriosis Lesions Using Gd-Based Collagen I Targeting Probe in Murine Models of Endometriosis

Endometriosis is a chronic condition characterized by high fibrotic content and affecting about 10% of women during their reproductive years. Yet, no clinically approved agents are available for non-invasive endometriosis detection. The purpose of this study was to investigate the utility of a gadolinium-based collagen type I targeting probe (EP-3533) to non-invasively detect...

Towards Characterization of Skin Melanoma in the Clinic by Electron Paramagnetic Resonance (EPR) Spectroscopy and Imaging of Melanin

The incidence of melanoma is continuously increasing over time. Melanoma is the most aggressive skin cancer, significantly reducing quality of life and survival rates of patients at advanced stages. Therefore, early diagnosis remains the key to change the prognosis of patients with melanoma. In this context, advanced technologies are under evaluation to increase the accuracy of...

Evaluating Receptor-Specific Fresh Specimen Staining for Tumor Margin Detection in Clinical Breast Specimens

Reliable and rapid identification of tumor in the margins of breast specimens during breast-conserving surgery to reduce repeat surgery rates is an active area of investigation. Dual-stain difference imaging (DDSI) is one of many approaches under evaluation for this application. This technique aims to topically apply fluorescent stain pairs (one targeted to a receptor-of-interest...

Multimodality PET and Near-Infrared Fluorescence Intraoperative Imaging of CEA-Positive Colorectal Cancer

Molecular imaging is a major diagnostic component for cancer management, enabling detection, staging of disease, targeting therapy, and monitoring the therapeutic response. The coordination of multimodality imaging techniques further enhances tumor localization. The development of a single agent for real-time non-invasive targeted positron emission tomography (PET) imaging and...

Lymphoma-Sink Effect in Marginal Zone Lymphoma Based on CXCR4-Targeted Molecular Imaging

Recent studies investigating a tumor-sink effect in solid tumors reported on decreasing uptake in normal organs in patients with higher tumor burden. This phenomenon, however, has not been evaluated yet for theranostic radiotracers applied to hematological neoplasms. As such, we aimed to determine a potential “lymphoma-sink effect” in patients with marginal zone lymphoma (MZL...

Current and Developing Lymphatic Imaging Approaches for Elucidation of Functional Mechanisms and Disease Progression

Study of the lymphatic system, compared to that of the other body systems, has been historically neglected. While scientists and clinicians have, in recent decades, gained a better appreciation of the functionality of the lymphatics as well as their role in associated diseases (and consequently investigated these topics further in their experimental work), there is still much...