The authors define a class of functions on Riemannian manifolds, which are called geodesic semilocal E-preinvex functions, as a generalization of geodesic semilocal E-convex and geodesic semi E-preinvex functions, and some of its properties are established. Furthermore, a nonlinear fractional multiobjective programming is considered, where the functions involved are geodesic E...

In this paper, we are concerned with the split equality problem (SEP) in Hilbert spaces. By converting it to a coupled fixed-point equation, we propose a new algorithm for solving the SEP. Whenever the convex sets involved are level sets of given convex functionals, we propose two new relaxed alternating algorithms for the SEP. The first relaxed algorithm is shown to be weakly...

We investigate a weighted Simpson-type identity and obtain new estimation-type results related to the weighted Simpson-like type inequality for the first-order differentiable mappings. We also present some applications to f-divergence measures and to higher moments of continuous random variables.

This paper presents a general strong limit theorem for delayed sum of functions of random variables for a hidden time inhomogeneous Markov chain (HTIMC), and as corollaries, some strong laws of large numbers for HTIMC are established thereby.

This paper introduces a concept of AE solutions to two-sided interval max-plus linear systems, a rather general concept which includes many known concepts of solutions to interval systems, in particular, weak, strong, tolerance and control solutions as its special cases. We state full characterizations of AE solutions for the two-sided interval max-plus systems, including both...

In this paper, based on ( α , m ) $(\alpha,m)$ -convexity, we establish different type inequalities via quantum integrals. These inequalities generalize some results given in the literature.

In the article, we present several quadratic transformation inequalities for Gaussian hypergeometric function and find the analogs of duplication inequalities for the generalized Grötzsch ring function.

An inequality is being proved which is connected to cost-effective numerical density estimation of the hyper-gamma probability distribution. The left-hand side of the inequality is a combination of two in the third parameter distinct versions of the hypergeometric function at the point one. All three parameters are functions of the distribution’s terminal shape. The first and...

Consider the equation u t = div ( d α | ∇ u | p − 2 ∇ u ) + ∂ b i ( u , x , t ) ∂ x i , ( x , t ) ∈ Ω × ( 0 , T ) , $${u_{t}} = \operatorname{div} \bigl(d^{\alpha} \vert \nabla u \vert ^{p - 2}\nabla u\bigr) + \frac{\partial b_{i}(u,x,t)}{\partial{x_{i}}},\quad (x,t) \in\Omega \times(0,T), $$ where Ω is a bounded domain, d ( x ) $d(x)$ is the distance function from the boundary...

In this paper, we show an elegant inequality involving the ratio of generalized complete elliptic integrals of the first kind and generalize an interesting result of Alzer.

In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.

In this paper, we introduce two variables norm functionals of τ-measurable operators and establish their joint log-convexity. Applications of this log-convexity will include interpolated Young, Heinz and Trace inequalities related to τ-measurable operators. Additionally, interpolated versions and their monotonicity will be presented as well.

As new applications of Schrödinger type inequalities obtained by Jiang (J. Inequal. Appl. 2016: Article ID 247, 2016) in the Schrödingerean Hardy space, we not only obtain the representation of Schrödingerean harmonic functions but also give a sufficient and necessary condition between the Schrödingerean distributional function and its derivative in the Schrödingerean Hardy space.

In this paper, we show an elegant inequality involving the ratio of generalized complete elliptic integrals of the first kind and generalize an interesting result of Alzer.

In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.

Some classical inequalities are known also in a more general form of Banach lattice norms and/or in continuous forms (i.e., for ‘continuous’ many functions are involved instead of finite many as in the classical situation). The main aim of this paper is to initiate a more consequent study of classical inequalities in this more general frame. We already here contribute by...

In this paper, we show an elegant inequality involving the ratio of generalized complete elliptic integrals of the first kind and generalize an interesting result of Alzer.

In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.

Some classical inequalities are known also in a more general form of Banach lattice norms and/or in continuous forms (i.e., for ‘continuous’ many functions are involved instead of finite many as in the classical situation). The main aim of this paper is to initiate a more consequent study of classical inequalities in this more general frame. We already here contribute by...

Let f be an analytic function in the unit disc | z | < 1 $|z|<1$ on the complex plane C $\mathbb {C}$ . This paper is devoted to obtaining the correspondence between f ( z ) $f(z)$ and z f ′ ( z ) $zf'(z)$ at the point w, 0 < | w | = R < 1 $0<|w|=R< 1$ , such that | f ( w ) | = min { | f ( z ) | : f ( z ) ∈ ∂ f ( | z | ≤ R ) } $|f(w)|=\min \{|f(z)|: f(z)\in\partial f(|z|\leq R...