Experimental Astronomy

http://link.springer.com/journal/10686

List of Papers (Total 103)

The ARIEL mission reference sample

The ARIEL (Atmospheric Remote-sensing Exoplanet Large-survey) mission concept is one of the three M4 mission candidates selected by the European Space Agency (ESA) for a Phase A study, competing for a launch in 2026. ARIEL has been designed to study the physical and chemical properties of a large and diverse sample of exoplanets and, through those, understand how planets form and...

Improving pointing of Toruń 32-m radio telescope: effects of rail surface irregularities

Over the last few years a number of software and hardware improvements have been implemented to the 32-m Cassegrain radio telescope located near Toruń. The 19-bit angle encoders have been upgraded to 29-bit in azimuth and elevation axes. The control system has been substantially improved, in order to account for a number of previously-neglected, astrometric effects that are...

SKA aperture array verification system: electromagnetic modeling and beam pattern measurements using a micro UAV

In this paper we present the electromagnetic modeling and beam pattern measurements of a 16-elements ultra wideband sparse random test array for the low frequency instrument of the Square Kilometer Array telescope. We discuss the importance of a small array test platform for the development of technologies and techniques towards the final telescope, highlighting the most relevant...

Towards practical autonomous deep-space navigation using X-Ray pulsar timing

We investigate the feasibility of deep-space navigation using the highly stable periodic signals from X-ray pulsars in combination with dedicated instrumentation on the spacecraft: a technique often referred to as ‘XNAV’. The results presented are based on the outputs from a study undertaken for the European Space Agency. The potential advantages of this technique include...

Space-based aperture array for ultra-long wavelength radio astronomy

The past decade has seen the advent of various radio astronomy arrays, particularly for low-frequency observations below 100 MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21 cm line emission. However, Earth-based radio astronomy...

The EChO science case

The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not...

EChOSim: The Exoplanet Characterisation Observatory software simulator

EChOSim is the end-to-end time-domain simulator of the Exoplanet Characterisation Observatory (EChO) space mission. EChOSim has been developed to assess the capability of the EChO mission concept to detect and characterise the atmospheres of transiting exoplanets. Here we discuss the details of the EChOSim implementation and describe the models used to represent the instrument...

Science of atmospheric phenomena with JEM-EUSO

The main goal of the JEM-EUSO experiment is the study of Ultra High Energy Cosmic Rays (UHECR, 1019−1021 e V), but the method which will be used (detection of the secondary light emissions induced by cosmic rays in the atmosphere) allows to study other luminous phenomena. The UHECRs will be detected through the measurement of the emission in the range between 290 and 430 m, where...

3D DIC tests of mirrors for the single-mirror small-size telescope of CTA

The Cherenkov Telescope Array (CTA) is the next generation very high energy gamma-ray observatory. Three classes of telescopes, of large, medium and small sizes are designed and developed for the observatory. The single-mirror option for the small-size telescopes (SST-1M), of 4 m diameter, dedicated to the observations of the highest energy gamma-rays above several TeV, consists...

Degradation assessment of LYRA after 5 years on orbit - Technology Demonstration -

We present a long-term assessment of the radiometric calibration and degradation of the Large Yield Radiometer (LYRA), which has been on orbit since 2009. LYRA is an ultraviolet (UV) solar radiometer and is the first space experiment using aboard a pioneering diamond detector technology. We show that LYRA has degraded after the commissioning phase but is still exploitable...

The EChO payload instrument – an overview

The Exoplanet Characterisation Observatory (EChO) mission was one of the proposed candidates for the European Space Agency’s third medium mission within the Cosmic Vision Framework. EChO was designed to observe the spectra from transiting exo-planets in the 0.55–11 micron band with a goal of covering from 0.4 to 16 micron. The mission and its associated scientific instrument has...

The visible and near infrared module of EChO

The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent...

The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres

Over the last twenty years, the search for extrasolar planets has revealed the rich diversity of outcomes from the formation and evolution of planetary systems. In order to fully understand how these extrasolar planets came to be, however, the orbital and physical data we possess are not enough, and they need to be complemented with information about the composition of the...

Data analysis pipeline for EChO end-to-end simulations

Atmospheric spectroscopy of extrasolar planets is an intricate business. Atmospheric signatures typically require a photometric precision of 1×10−4 in flux over several hours. Such precision demands high instrument stability as well as an understanding of stellar variability and an optimal data reduction and removal of systematic noise. In the context of the EChO mission concept...

In-flight calibration of the HIFI diplexers

HIFI is a heterodyne spectrometer aboard the Herschel Space Observatory, providing high-spectral-resolution capabilities. Of its seven frequency bands, four (bands 3, 4, 6, and 7) employ Martin-Puplett diplexers to combine sky signal and local oscillator at the two linear polarizations H and V, prior to feeding them into the mixers (receivers). The optical path difference in each...