Abstract We discuss the four dimensional models obtained by compactifying a single M5 brane probing D N singularity (minimal D-type (1, 0) conformal matter in six dimensions) on a torus with flux for abelian subgroups of the SO(4N) flavor symmetry. We derive the resulting quiver field theories in four dimensions by first compactifying on a circle and relating the flux to duality...

Abstract We implement scalar and vector leptoquark (LQ) models in the universal FeynRules output (UFO) format assuming the Standard Model fermion content and conservation of baryon and lepton numbers. Scalar LQ implementations include next-to-leading order (NLO) QCD corrections. We report the NLO QCD inclusive cross sections in proton-proton collisions at 13 TeV, 14 TeV, and 27...

Abstract f (R) supergravity is known to contain a ghost mode associated with higher-derivative terms if it contains R n with n greater than two. We remove the ghost in f (R) supergravity by introducing auxiliary gauge field to absorb the ghost. We dub this method as the ghostbuster mechanism [1]. We show that the mechanism removes the ghost super-multiplet but also terms...

Abstract The unwinding inflation mechanism is studied in a type IIB flux compactification where all moduli are stabilized using flux, non-perturbative effects, and the leading α′ corrections of the large volume scenario. We consider the backreaction on the geometry due to the presence of anti-D3 branes as well as the backreaction of inflation on the Kähler moduli, and compute the...

Abstract In a previous paper we found that the isospin susceptibility of the O(n) sigma-model calculated in the standard rotator approximation differs from the next-to-next-to leading order chiral perturbation theory result in terms vanishing like 1/ℓ, for ℓ = L t /L → ∞ and further showed that this deviation could be described by a correction to the rotator spectrum proportional...

Abstract Higher-order derivative terms are considered as replacement for the Skyrme term in an Einstein-Skyrme-like model in order to pinpoint which properties are necessary for a black hole to possess stable static scalar hair. We find two new models able to support stable black hole hair in the limit of the Skyrme term being turned off. They contain 8 and 12 derivatives...

AbstractWe study splitting and joining interactions of giant gravitons with angular momenta N 1/2 ≪ J ≪ N in the type IIB string theory on AdS5 × S5 by describing them as instantons in the tiny graviton matrix model introduced by Sheikh-Jabbari. At large J the instanton equation can be mapped to the four-dimensional Laplace equation and the Coulomb potential for m point charges...

Abstract The lack of evidence for the production of colored supersymmetric particles at the LHC has increased interest in searches for superpartners of the electroweak SM gauge bosons, namely the neutralinos and charginos. These are challenging due to the weak nature of the production process, and the existing discovery reach has significant gaps in due to the difficulty of...

Abstract This paper analyzes U(1) F-theory models admitting matter with charges q = 3 and 4. First, we systematically derive a q = 3 construction that generalizes the previous q = 3 examples. We argue that U(1) symmetries can be tuned through a procedure reminiscent of the SU(N ) and Sp(N ) tuning process. For models with q = 3 matter, the components of the generating section...

Abstract We search for the three-generation standard-like and/or Pati-Salam models from the SO(32) heterotic string theory on smooth, quotient complete intersection Calabi-Yau threefolds with multiple line bundles, each with structure group U(1). These models are S- and T-dual to intersecting D-brane models in type IIA string theory. We find that the stable line bundles and...

Abstract In this work we have studied the Kleiss-Kuijf relations for the recently introduced Parke-Taylor factors at one-loop in the CHY approach, that reproduce quadratic Feynman propagators. By doing this, we were able to identify the non-planar one-loop Parke-Taylor factors. In order to check that, in fact, these new factors can describe non-planar amplitudes, we applied them...

Abstract We analyze 3-loop contributions to the gauge coupling felt by ultrasoft (“magnetostatic”) modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The...

AbstractWe present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross...

AbstractWe construct several BV master actions for open superstring field theory in the large Hilbert space. First, we show that a naive use of the conventional BV approach breaks down at the third order of the antifield number expansion, although it enables us to define a simple “string antibracket” taking the Darboux form as spacetime antibrackets. This fact implies that in the...

Abstract Future measurements of primordial non-Gaussianity can reveal cosmologically produced particles with masses of order the inflationary Hubble scale and their interactions with the inflaton, giving us crucial insights into the structure of fundamental physics at extremely high energies. We study gauge-Higgs theories that may be accessible in this regime, carefully imposing...

AbstractParticles in a curved space are classically described by a nonlinear sigma model action that can be quantized through path integrals. The latter require a precise regularization to deal with the derivative interactions arising from the nonlinear kinetic term. Recently, for maximally symmetric spaces, simplified path integrals have been developed: they allow to trade the...

Abstract The Ward identities associated with spontaneously broken symmetries can be saturated by Goldstone bosons. However, when space-time symmetries are broken, the number of Goldstone bosons necessary to non-linearly realize the symmetry can be less than the number of broken generators. The loss of Goldstones may be due to a redundancy or the generation of a gap. In either...

Abstract How light can a fermion be if it has unit electric charge? We revisit the lore that LEP robustly excludes charged fermions lighter than about 100 GeV. We review LEP chargino searches, and find them to exclude charged fermions lighter than 90 GeV, assuming a higgsino-like cross section. However, if the charged fermion couples to a new scalar, destructive interference...

AbstractWe establish an all-loop conformal Yangian symmetry for the full set of planar amplitudes in the recently proposed integrable bi-scalar field theory in four dimensions. This chiral theory is a particular double scaling limit of γ-twisted weakly coupled \( \mathcal{N}=4 \) SYM theory. Each amplitude with a certain order of scalar particles is given by a single fishnet...

AbstractWe propose a novel strategy for the perturbative resummation of transverse momentum-dependent (TMD) observables, using the q T spectra of gauge bosons (γ∗, Higgs) in pp collisions in the regime of low (but perturbative) transverse momentum q T as a specific example. First we introduce a scheme to choose the factorization scale for virtuality in momentum space instead of...