Journal of High Energy Physics

http://link.springer.com/journal/13130

List of Papers (Total 8,901)

Elliptic genera of 2d (0,2) gauge theories from brane brick models

We compute the elliptic genus of abelian 2d (0, 2) gauge theories corresponding to brane brick models. These theories are worldvolume theories on a single D1-brane probing a toric Calabi-Yau 4-fold singularity. We identify a match with the elliptic genus of the non-linear sigma model on the same Calabi-Yau background, which is computed using a new localization formula. The matching ...

Domain wall seeds in CSO-gauged supergravity

Gravitational domain wall solutions in gauged supergravity are often constructed within truncations that do not include vectors. As a consequence the gauge group is only a global symmetry of this truncation. The consistency of the truncation requires the restriction to solutions with vanishing Noether charge under this global symmetry, since otherwise vector fields are sourced. We ...

Novel signatures for vector-like quarks

We consider supersymmetric extensions of the standard model with a vector-like doublet (T B) of quarks with charge 2/3 and −1/3, respectively. Compared to non-supersymmetric models, there is a variety of new decay modes for the vector-like quarks, involving the extra scalars present in supersymmetry. The importance of these new modes, yielding multi-top, multi-bottom and also ...

Abelian Z-theory: NLSM amplitudes and α ′ -corrections from the open string

In this paper we derive the tree-level S-matrix of the effective theory of Goldstone bosons known as the non-linear sigma model (NLSM) from string theory. This novel connection relies on a recent realization of tree-level open-superstring S-matrix pre-dictions as a double copy of super-Yang-Mills theory with Z-theory — the collection of putative scalar effective field theories ...

Precision corrections to fine tuning in SUSY

Requiring that the contributions of supersymmetric particles to the Higgs mass are not highly tuned places upper limits on the masses of superpartners — in particular the higgsino, stop, and gluino. We revisit the details of the tuning calculation and introduce a number of improvements, including RGE resummation, two-loop effects, a proper treatment of UV vs. IR masses, and ...

Backreaction issues in axion monodromy and Minkowski 4-forms

We clarify the differences between the usual Kaloper-Sorbo description of axion monodromy and the effective axionic potential in terms of Minkowski 4-forms derived in string compactifications. The fact that the metric of the 3-form fields coming from string theory is field dependent (unlike in Kaloper-Sorbo) leads to the backreaction issues recently studied in axion monodromy ...

On the mutual information in conformal field theory

In this work, we study the universal behaviors in the mutual information of two disjoint spheres in a conformal field theory (CFT). By using the operator product expansion of the spherical twist operator in terms of the conformal family, we show that the large distance expansion of the mutual information can be cast in terms of the conformal blocks. We develop the 1/n prescription ...

Linking light scalar modes with a small positive cosmological constant in string theory

Based on the studies in Type IIB string theory phenomenology, we conjecture that a good fraction of the meta-stable de Sitter vacua in the cosmic stringy landscape tend to have a very small cosmological constant Λ when compared to either the string scale M S or the Planck scale M P , i.e., Λ ≪ M S 4 ≪ M P 4 . These low lying de Sitter vacua tend to be accompanied by very light ...

Detecting kinematic boundary surfaces in phase space: particle mass measurements in SUSY-like events

We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using ...

Minimally extended SILH

Higgs boson compositeness is a phenomenologically viable scenario addressing the hierarchy problem. In minimal models, the Higgs boson is the only degree of freedom of the strong sector below the strong interaction scale. We present here the simplest extension of such a framework with an additional composite spin-zero singlet. To this end, we adopt an effective field theory ...

Second order higher-derivative corrections in Double Field Theory

HSZ Double Field Theory is a higher-derivative theory of gravity with exact and manifest T-duality symmetry. The first order corrections in the massless sector were shown to be governed solely by Chern-Simons deformations of the three-form field strength. We compute the full action with up to six derivatives \( \mathcal{O}\left({\alpha}^{\prime 2}\right) \) for the universal sector ...

Geodesic diagrams, gravitational interactions & OPE structures

We give a systematic procedure to evaluate conformal partial waves involving symmetric tensors for an arbitrary CFT d using geodesic Witten diagrams in AdS d+1. Using this procedure we discuss how to draw a line between the tensor structures in the CFT and cubic interactions in AdS. We contrast this map to known results using three-point Witten diagrams: the maps obtained via ...

Physical stress, mass, and energy for non-relativistic matter

For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss ...

Derivation of Feynman rules for higher order poles using cross-ratio identities in CHY construction

In order to generalize the integration rules to general CHY integrands which include higher order poles, algorithms are proposed in two directions. One is to conjecture new rules, and the other is to use the cross-ratio identity method. In this paper, we use the cross-ratio identity approach to re-derive the conjectured integration rules involving higher order poles for several ...

Searching for dark absorption with direct detection experiments

We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous ...

On the surface of superfluids

Developing on a recent work on localized bubbles of ordinary relativistic fluids, we study the comparatively richer leading order surface physics of relativistic superfluids, coupled to an arbitrary stationary background metric and gauge field in 3 + 1 and 2 + 1 dimensions. The analysis is performed with the help of a Euclidean effective action in one lower dimension, written in ...

Mono-X versus direct searches: simplified models for dark matter at the LHC

We consider simplified models for dark matter (DM) at the LHC, focused on mono-Higgs, -Z or -b produced in the final state. Our primary purpose is to study the LHC reach of a relatively complete set of simplified models for these final states, while comparing the reach of the mono-X DM search against direct searches for the mediating particle. We find that direct searches for the ...

Generalized fragmentation functions for fractal jet observables

We introduce a broad class of fractal jet observables that recursively probe the collective properties of hadrons produced in jet fragmentation. To describe these collinear-unsafe observables, we generalize the formalism of fragmentation functions, which are important objects in QCD for calculating cross sections involving identified final-state hadrons. Fragmentation functions are ...

Double hard scattering without double counting

Double parton scattering in proton-proton collisions includes kinematic regions in which two partons inside a proton originate from the perturbative splitting of a single parton. This leads to a double counting problem between single and double hard scattering. We present a solution to this problem, which allows for the definition of double parton distributions as operator matrix ...

Holographic micro thermofield geometries of BTZ black holes

We find general deformations of BTZ spacetime and identify the corresponding thermofield initial states of the dual CFT. We deform the geometry by introducing bulk fields dual to primary operators and find the back-reacted gravity solutions to the quadratic order of the deformation parameter. The dual thermofield initial states can be deformed by inserting arbitrary linear ...

Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production

We present an extraction of unpolarized partonic transverse momentum distributions (TMDs) from a simultaneous fit of available data measured in semi-inclusive deep-inelastic scattering, Drell-Yan and Z boson production. To connect data at different scales, we use TMD evolution at next-to-leading logarithmic accuracy. The analysis is restricted to the low-transverse-momentum region, ...

A tale of two portals: testing light, hidden new physics at future e + e − colliders

We investigate the prospects for producing new, light, hidden states at a future e + e − collider in a Higgsed dark U(1) D model, which we call the Double Dark Portal model. The simultaneous presence of both vector and scalar portal couplings immediately modifies the Standard Model Higgsstrahlung channel, e + e − → Zh, at leading order in each coupling. In addition, each portal ...

Simulations of Cold Electroweak Baryogenesis: hypercharge U(1) and the creation of helical magnetic fields

We perform numerical simulations of Cold Electroweak Baryogenesis, including for the first time in the Bosonic sector the full electroweak gauge group SU(2) × U(1) and CP-violation. We find that the maximum generated baryon asymmetry is reduced by a factor of three relative to the SU(2)-only model of [1], but that the quench time dependence is very similar. In addition, we compute ...

On the quantum field theory of the gravitational interactions

We study the main options for a unitary and renormalizable, local quantum field theory of the gravitational interactions. The first model is a Lee-Wick superrenormalizable higher-derivative gravity, formulated as a nonanalytically Wick rotated Euclidean theory. We show that, under certain conditions, the S matrix is unitary when the cosmological constant vanishes. The model is the ...

Inverse of the string theory KLT kernel

The field theory Kawai-Lewellen-Tye (KLT) kernel, which relates scattering amplitudes of gravitons and gluons, turns out to be the inverse of a matrix whose components are bi-adjoint scalar partial amplitudes. In this note we propose an analogous construction for the string theory KLT kernel. We present simple diagrammatic rules for the computation of the α′-corrected bi-adjoint ...