A search is performed for Higgs-boson-mediated flavor-changing neutral currents in the decays of top quarks. The search is based on proton-proton collision data corresponding to an integrated luminosity of 19.7 fb−1 at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC. Events in which a top quark pair is produced with one top quark decaying into a charm or ...

The SYK model: fermions with a q-body, Gaussian-random, all-to-all interaction, is the first of a fascinating new class of solvable large N models. We generalize SYK to include f flavors of fermions, each occupying N a sites and appearing with a q a order in the interaction. Like SYK, this entire class of models generically has an infrared fixed point. We compute the infrared ...

We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects ...

We perform further tests of the correspondence between spectral theory and topological strings, focusing on mirror curves of genus greater than one with nontrivial mass parameters. In particular, we analyze the geometry relevant to the SU(3) relativistic Toda lattice, and the resolved \( {\mathbb{C}}^{{}^3}/{\mathbb{Z}}_6 \) orbifold. Furthermore, we give evidence that the ...

We have computed the five-loop corrections to the scale dependence of the renormalized coupling constant for Quantum Chromodynamics (QCD), its generalization to non-Abelian gauge theories with a simple compact Lie group, and for Quantum Electrodynamics (QED). Our analytical result, obtained using the background field method, infrared rearrangement via a new diagram-by-diagram ...

The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward (−4.46 < y cms < −2.96) and forward (2.03 < y cms < 3.53) rapidity regions, corresponding to Pb-going and p-going directions, respectively. The Z-boson ...

We discuss the single-diffractive production of cc pairs and charmed mesons at the LHC. For a first time we propose a k t -factorization approach to the diffractive processes. The transverse momentum dependent diffractive parton distributions are obtained from standard (collinear) diffractive parton distributions used in the literature. In this calculation the transverse momentum ...

The study of axion models and quantum corrections to their potential has experienced great progress by phrasing the axion potential in terms of a 3-form field eating up the 2-form field dual to the axion. Such reformulation of the axion potential has been described for axion monodromy models and for axion potentials from non-perturbative gauge dynamics. In this paper we propose a ...

We study maximally supersymmetric solutions of all gauged or deformed supergravity theories in D ≥ 3 space-time dimensions. For vanishing background fluxes the space-time background has to be either Minkowski or anti-de Sitter. We derive a simple criterion for the existence of solutions with non-trivial fluxes and determine all supergravities that satisfy it. We show that their ...

We study a generalization of the D-dimensional Vasiliev theory to include a tower of partially massless fields. This theory is obtained by replacing the usual higher-spin algebra of Killing tensors on (A)dS with a generalization that includes “third-order” Killing tensors. Gauging this algebra with the Vasiliev formalism leads to a fully non-linear theory which is expected to be UV ...

We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a “na¨ıve” perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in ...

I propose the measurement of the W ± h charge asymmetry as a consistency test for the Standard Model (SM) Higgs, which is sensitive to enhanced Yukawa couplings of the first and second generation quarks. I present a collider analysis for the charge asymmetry in the same-sign lepton final state, pp → W ± h → (ℓ ± ν) (ℓ ± νjj), aimed at discovery significance for the SM W ± h ...

We consider multi-flavor massless (1 + 1)-dimensional QED with chemical potentials at finite spatial length and the zero-temperature limit. Its sign problem is solved using the mean-field calculation with complex saddle points.

In this work, we study an important facet of field theories in curved space-time, viz. the Unruh effect, by making use of ideas of statistical mechanics and quantum foundations. Aspects of decoherence and dissipation, natural artifacts of open quantum systems, along with foundational issues such as the trade-off between coherence and mixing as well as various aspects of quantum ...

We give a systematic derivation of the local expressions of the NS H-flux, geometric F- as well as non-geometric Q- and R-fluxes in terms of bivector β- and two-form B-potentials including vielbeins. They are obtained using a supergeometric method on QP-manifolds by twist of the standard Courant algebroid on the generalized tangent space without flux. Bianchi identities of the ...

SU(5) ⊗ SU(5) provides a minimal grand unification scheme for fermions and gauge forces if there are vector-like quarks and leptons in nature. We explore the gauge coupling unification in a non-supersymmetric model of this type, and study its implications for proton decay. The properties of vector-like quarks and intermediate scales that emerge from coupling unification play a ...

We present expressions for the supercurrents generated by a generic 4D, \( \mathcal{N}=1 \) theory of complex linear superfield Σ. We verify that these expressions satisfy the appropriate superspace conservation equations. Furthermore, we discuss the component projection in order to derive expressions for the energy-momentum tensor, the supersymmetry current and the R-symmetry ...

Same- and opposite-sign charge asymmetries are measured in lepton+jets \( t\overline{t} \) events in which a b-hadron decays semileptonically to a soft muon, using data corresponding to an integrated luminosity of 20.3 fb−1 from proton-proton collisions at a centre-of-mass energy of \( \sqrt{s}=8 \) TeV collected with the ATLAS detector at the Large Hadron Collider at CERN. The ...

We study certain \( \mathcal{N}=1 \) preserving deformations of four-dimensional \( \mathcal{N}=2 \) superconformal field theories (SCFTs) with non-abelian flavor symmetry. The deformation is described by adding an \( \mathcal{N}=1 \) chiral multiplet transforming in the adjoint representation of the flavor symmetry with a superpotential coupling, and giving a nilpotent vacuum ...

We study closed-string moduli stabilization in Higgs-otic inflation in Type IIB orientifold backgrounds with fluxes. In this setup large-field inflation is driven by the vacuum energy of mobile D7-branes. Imaginary selfdual (ISD) three-form fluxes in the background source a μ-term and the necessary monodromy for large field excursions while imaginary anti-selfdual (IASD) three-form ...

We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ ...

We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and ...

In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between SO(N) k Chern-Simons theories coupled to N f ...

We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the ...