AbstractWe study splitting and joining interactions of giant gravitons with angular momenta N 1/2 ≪ J ≪ N in the type IIB string theory on AdS5 × S5 by describing them as instantons in the tiny graviton matrix model introduced by Sheikh-Jabbari. At large J the instanton equation can be mapped to the four-dimensional Laplace equation and the Coulomb potential for m point charges...

Abstract We consider QCD radiative corrections to Higgs boson pair production through gluon fusion in proton collisions. We combine the exact next-to-leading order (NLO) contribution, which features two-loop virtual amplitudes with the full dependence on the top quark mass M t , with the next-to-next-to-leading order (NNLO) corrections computed in the large-M t approximation. The...

Abstract We consider extended scalar sectors of the Standard Model as ultraviolet complete motivations for studying the effective Higgs self-interaction operators of the Standard Model effective field theory. We investigate all motivated heavy scalar models which generate the dimension-six effective operator, |H|6, at tree level and proceed to identify the full set of tree-level...

Abstract The lack of evidence for the production of colored supersymmetric particles at the LHC has increased interest in searches for superpartners of the electroweak SM gauge bosons, namely the neutralinos and charginos. These are challenging due to the weak nature of the production process, and the existing discovery reach has significant gaps in due to the difficulty of...

Abstract The Standard Model prediction for ϵ′/ϵ based on recent lattice QCD results exhibits a tension with the experimental data. We solve this tension through W R + gauge boson exchange in the SU(2) L × SU(2) R × U(1)B−L model with ‘charge symmetry’, whose theoretical motivation is to attribute the chiral structure of the Standard Model to the spontaneous breaking of SU(2) R...

Abstract This paper analyzes U(1) F-theory models admitting matter with charges q = 3 and 4. First, we systematically derive a q = 3 construction that generalizes the previous q = 3 examples. We argue that U(1) symmetries can be tuned through a procedure reminiscent of the SU(N ) and Sp(N ) tuning process. For models with q = 3 matter, the components of the generating section...

Abstract We formulate a predictive model of fermion masses and mixings based on a Δ(27) family symmetry. In the quark sector the model leads to the viable mixing inspired texture where the Cabibbo angle comes from the down quark sector and the other angles come from both up and down quark sectors. In the lepton sector the model generates a predictive structure for charged leptons...

AbstractFixed points for scalar theories in 4 − ε, 6 − ε and 3 − ε dimensions are discussed. It is shown how a large range of known fixed points for the four dimensional case can be obtained by using a general framework with two couplings. The original maximal symmetry, O(N), is broken to various subgroups, both discrete and continuous. A similar discussion is applied to the six...

Abstract We consider a non-relativistic (NR) limit of (2 + 1)-dimensional Maxwell Chern-Simons (CS) gravity with gauge algebra [Maxwell] ⊕ u(1) ⊕ u(1). We obtain a finite NR CS gravity with a degenerate invariant bilinear form. We find two ways out of this difficulty: to consider i) [Maxwell] ⊕ u(1), which does not contain Extended Bargmann gravity (EBG); or, ii) the NR limit of...

Abstract We search for the three-generation standard-like and/or Pati-Salam models from the SO(32) heterotic string theory on smooth, quotient complete intersection Calabi-Yau threefolds with multiple line bundles, each with structure group U(1). These models are S- and T-dual to intersecting D-brane models in type IIA string theory. We find that the stable line bundles and...

Abstract We consider soft-gluon evolution at the amplitude level. Our evolution algorithm applies to generic hard-scattering processes involving any number of coloured partons and we present a reformulation of the algorithm in such a way as to make the cancellation of infrared divergences explicit. We also emphasise the special role played by a Lorentz-invariant evolution...

Abstract In this work we have studied the Kleiss-Kuijf relations for the recently introduced Parke-Taylor factors at one-loop in the CHY approach, that reproduce quadratic Feynman propagators. By doing this, we were able to identify the non-planar one-loop Parke-Taylor factors. In order to check that, in fact, these new factors can describe non-planar amplitudes, we applied them...

Abstract We study five-dimensional superconformal field theories and their holographic dual, matter-coupled Romans supergravity. On the one hand, some recently derived formulae allow us to extract the central charges from deformations of the supersymmetric five-sphere partition function, whose large N expansion can be computed using matrix model techniques. On the other hand, the...

Abstract We analyze 3-loop contributions to the gauge coupling felt by ultrasoft (“magnetostatic”) modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The...

Abstract Holographic RG flows dual to QFTs on maximally symmetric curved manifolds (dS d , AdS d , and S d ) are considered in the framework of Einstein-dilaton gravity in d + 1 dimensions. A general dilaton potential is used and the flows are driven by a scalar relevant operator. The general properties of such flows are analyzed and the UV and IR asymptotics computed. New RG...

AbstractThe microscopic formula for the degeneracy of BMPV black hole microstates contains a series of exponentially suppressed corrections to the leading Bekenstein Hawking expression. We identify saddle points of the quantum entropy function for the BMPV black hole which are natural counterparts to these corrections and discuss the matching of leading and next-to-leading terms...

AbstractIt was recently proposed that \( \mathcal{N} \) = 1 supersymmetric gauged matrix models have a duality of order four — that is, a quadrality — reminiscent of infrared dualities of SQCD theories in higher dimensions. In this note, we show that the zero-dimensional quadrality proposal can be inferred from the two-dimensional Gadde-Gukov-Putrov triality. We consider two...

Abstract We consider the general \( \mathcal{N}=4 \), d = 3 Galilean superalgebra with arbitrary central charges and study its dynamical realizations. Using the nonlinear realization techniques, we introduce a class of actions for \( \mathcal{N}=4 \) three-dimensional non-relativistic superparticle, such that they are linear in the central charge Maurer-Cartan one-forms. As a...

AbstractWe present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross...

AbstractWe construct several BV master actions for open superstring field theory in the large Hilbert space. First, we show that a naive use of the conventional BV approach breaks down at the third order of the antifield number expansion, although it enables us to define a simple “string antibracket” taking the Darboux form as spacetime antibrackets. This fact implies that in the...

Abstract Future measurements of primordial non-Gaussianity can reveal cosmologically produced particles with masses of order the inflationary Hubble scale and their interactions with the inflaton, giving us crucial insights into the structure of fundamental physics at extremely high energies. We study gauge-Higgs theories that may be accessible in this regime, carefully imposing...

AbstractParticles in a curved space are classically described by a nonlinear sigma model action that can be quantized through path integrals. The latter require a precise regularization to deal with the derivative interactions arising from the nonlinear kinetic term. Recently, for maximally symmetric spaces, simplified path integrals have been developed: they allow to trade the...

AbstractWe borrow the general idea of renormalization-group equations (RGEs) to understand how neutrino masses and flavor mixing parameters evolve when neutrinos propagate in a medium, highlighting a meaningful possibility that the genuine flavor quantities in vacuum can be extrapolated from their matter-corrected counterparts to be measured in some realistic neutrino oscillation...

Abstract The Ward identities associated with spontaneously broken symmetries can be saturated by Goldstone bosons. However, when space-time symmetries are broken, the number of Goldstone bosons necessary to non-linearly realize the symmetry can be less than the number of broken generators. The loss of Goldstones may be due to a redundancy or the generation of a gap. In either...