Journal of Materials Science

http://link.springer.com/journal/10853

List of Papers (Total 358)

Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications

Polymers of intrinsic microporosity (PIMs) are currently attracting interest due to their unusual combination of high surface areas and capability to be processed into free-standing films. However, there has been little published work with regards to their physical and mechanical properties. In this paper, detailed characterisation of PIM-1 was performed by considering its ...

Synthesis of NiCo2O4 nanoneedle@polypyrrole arrays supported on 3D graphene electrode for high-performance detection of trace Pb2+

In this work, we reported the highly ordered NiCo2O4 nanoneedle@polypyrrole arrays anchored on three-dimensional graphene (NiCo2O4@PPy/3D graphene) for high-sensitivity detection of trace lead ions (Pb2+). The 3D graphene was prepared by a hydrothermal process and then decorated with NiCo2O4 nanoneedle arrays by another hydrothermal process. This two-step hydrothermal method is ...

Understanding the ballistic event: methodology and initial observations

The purpose of the study is to accelerate the development of ceramic materials for armour applications by substantially increasing the information obtained from a high-energy projectile impact event. This has been achieved by modifying an existing test configuration to incorporate a block of ballistic gel, attached to the strike face of a ceramic armour system, to capture fragments ...

Ultraviolet to far-infrared transmission properties of thin film multi-walled carbon nanotube random networks

Thin films of multi-walled carbon nanotubes forming random networks were produced by vacuum filtration method, and their broadband electromagnetic radiation transmittance spectra are presented. Thickness of the nanotube films was between 100 nm and 1 μm, and the transmission properties are demonstrated for the wavelength range from 300 nm to 400 μm. It is observed that ...

Multi-axial forging of Fe3Al-base intermetallic alloy and its mechanical properties

Tri-axial plane-strain forging was applied to the Fe–28Al–5Cr–0.8Zr–0.04B intermetallic alloy, in order to study its grain refinement and possible improvement in mechanical properties. The forging temperature range was from 20 to 600 °C. The maximum number of forging passes was 67. The deformed microstructure was investigated using electron backscatter diffraction in a scanning ...

Electric relaxation and Mn3+/Mn4+ charge transfer in Fe-doped Bi12MnO20–BiMn2O5 structural self-composite

Fe-doped Bi12MnO20–BiMn2O5 ceramics was sintered at 1130 K for 6 h in ambient air. Two centro-symmetric phases formed thermodynamically stable self-composite material that was deduced from X-ray pattern analysis. The lattice parameters were a = 10.147(8) Å—for the cubic I23 Bi12MnO20 phase; and a = 7.545(4) Å, b = 8.538(1) Å, c = 5.758(3) Å—for the orthorhombic Pbam BiMn2O5 phase. ...

Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices

In the current work, the microstructure and fracture performance of carbon fibre-reinforced polymer (CFRP) composites based upon matrices of an anhydride-cured epoxy resin (formulated with a reactive diluent), and containing silica nanoparticles and/or polysiloxane core–shell rubber (CSR) nanoparticles, were investigated. Double cantilever beam tests were performed in order to ...

Modeling of manganese sulfide formation during the solidification of steel

A comprehensive model was developed to simulate manganese sulfide formation during the solidification of steel. This model coupled the formation kinetics of manganese sulfide with a microsegregation model linked to thermodynamic databases. Classical nucleation theory and a diffusion-controlled growth model were applied to describe the formation process. Particle size distribution ...