Journal of Materials Science

http://link.springer.com/journal/10853

List of Papers (Total 341)

Critical path-driven property and performance transitions in heterogeneous microstructures

Structure–property relationships are usually discussed in the context of optimization of the equilibrium properties of heterogeneous materials. The logic and consequences of the effects of grain size and shape in metals and ceramics, porosity and particle size distributions in aggregates, and fiber/matrix arrangement details in fibrous composites are familiar examples. However, for ...

Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications

Polymers of intrinsic microporosity (PIMs) are currently attracting interest due to their unusual combination of high surface areas and capability to be processed into free-standing films. However, there has been little published work with regards to their physical and mechanical properties. In this paper, detailed characterisation of PIM-1 was performed by considering its ...

Ferroelectric \(\pi \) -stacks of molecules with the energy gaps in the sunlight range

Ferroelectric \(\pi \)-stacked molecular wires for solar cell applications are theoretically designed in such a way that their energy gaps fall within visible and infrared range of the Sun radiation. Band engineering is tailored by a modification of the number of the aromatic rings and via a choice of the number and kind of dipole groups. The electronic structures of molecular ...

Evolution of silver in a eutectic-based Bi2O3–Ag metamaterial

The development of novel manufacturing techniques of nano-/micromaterials, especially metallodielectric materials, has enabled dynamic development of such fields as nanoplasmonics. However, the fabrication methods are still mostly based on time-consuming and costly top-down techniques limited to two-dimensional materials. Recently, directional solidification has been proposed and ...

Size-dependent mechanical behavior and boundary layer effects in entangled metallic wire material systems

This paper describes the influence on the compressive and dissipative behavior of entangled metallic wire material (EMWM) samples provided by their size and mutual connectivity. The mechanical properties of EMWM specimens with different thicknesses are obtained from quasi-static compressive and cyclic loading. The behavior of the stress–strain curves, tangent modulus, and loss ...

Understanding the ballistic event: methodology and initial observations

The purpose of the study is to accelerate the development of ceramic materials for armour applications by substantially increasing the information obtained from a high-energy projectile impact event. This has been achieved by modifying an existing test configuration to incorporate a block of ballistic gel, attached to the strike face of a ceramic armour system, to capture fragments ...

Ultraviolet to far-infrared transmission properties of thin film multi-walled carbon nanotube random networks

Thin films of multi-walled carbon nanotubes forming random networks were produced by vacuum filtration method, and their broadband electromagnetic radiation transmittance spectra are presented. Thickness of the nanotube films was between 100 nm and 1 μm, and the transmission properties are demonstrated for the wavelength range from 300 nm to 400 μm. It is observed that ...

Multi-axial forging of Fe3Al-base intermetallic alloy and its mechanical properties

Tri-axial plane-strain forging was applied to the Fe–28Al–5Cr–0.8Zr–0.04B intermetallic alloy, in order to study its grain refinement and possible improvement in mechanical properties. The forging temperature range was from 20 to 600 °C. The maximum number of forging passes was 67. The deformed microstructure was investigated using electron backscatter diffraction in a scanning ...

Electric relaxation and Mn3+/Mn4+ charge transfer in Fe-doped Bi12MnO20–BiMn2O5 structural self-composite

Fe-doped Bi12MnO20–BiMn2O5 ceramics was sintered at 1130 K for 6 h in ambient air. Two centro-symmetric phases formed thermodynamically stable self-composite material that was deduced from X-ray pattern analysis. The lattice parameters were a = 10.147(8) Å—for the cubic I23 Bi12MnO20 phase; and a = 7.545(4) Å, b = 8.538(1) Å, c = 5.758(3) Å—for the orthorhombic Pbam BiMn2O5 phase. ...

Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices

In the current work, the microstructure and fracture performance of carbon fibre-reinforced polymer (CFRP) composites based upon matrices of an anhydride-cured epoxy resin (formulated with a reactive diluent), and containing silica nanoparticles and/or polysiloxane core–shell rubber (CSR) nanoparticles, were investigated. Double cantilever beam tests were performed in order to ...

Modeling of manganese sulfide formation during the solidification of steel

A comprehensive model was developed to simulate manganese sulfide formation during the solidification of steel. This model coupled the formation kinetics of manganese sulfide with a microsegregation model linked to thermodynamic databases. Classical nucleation theory and a diffusion-controlled growth model were applied to describe the formation process. Particle size distribution ...

Comparison study of silicon carbide coatings produced at different deposition conditions with use of high temperature nanoindentation

The elastic modulus and hardness of different silicon carbide (SiC) coatings in tristructural-isotropic (TRISO) fuel particles were measured by in situ high temperature nanoindentation up to 500 °C. Three samples fabricated by different research institutions were compared. Due to varied fabrication parameters the samples exhibited different grain sizes and one contained some ...

Reduced polarity and improved dispersion of microfibrillated cellulose in poly(lactic-acid) provided by residual lignin and hemicellulose

The surface chemistry and dispersion in poly(lactic-acid) of microfibrillated wood and microfibrillated lignocellulose prepared from untreated and partially delignified beech were compared with conventional microfibrillated cellulose produced from bleached pulp. High heterogeneity in fibril morphology and bulk chemical composition was observed. Also surface chemistry of the fibrils ...

Silicon particle pinhole defects in aluminium–silicon alloys

It was recently shown that silicon particles in heat-treated Al–Si casting alloys can contain flaws such as surface pinholes and grooves, which cause varying degrees of reduction in the in situ particle fracture strength and hence influence the mechanical properties of this class of alloys. In this work, we show that the formation of one class of such strength-limiting flaws in ...

Electrical properties of silica-doped 3 mol% yttria-stabilized tetragonal zirconia

Inconsistent opinions in the literature on the impact of silica on the conductivity of Y2O3–ZrO2 system become a motivating reason to reinvestigate this matter. Too low a value of the grain boundaries’ conductivity in the case of 3YSZ (3 mol% yttria-stabilized zirconia) is a fundamental barrier to using this material in the solid oxide fuel cell technology. The presence of silica ...

Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr0.53Ti0.47O3 (PZT)–PbFe0.5Ta0.5O3 (PFT)

Elastic and anelastic properties of ceramic samples of multiferroic perovskites with nominal compositions across the binary join PbZr0.53Ti0.47O3–PbFe0.5Ta0.5O3 (PZT–PFT) have been assembled to create a binary phase diagram and to address the role of strain relaxation associated with their phase transitions. Structural relationships are similar to those observed previously for ...

Effect of solution treatment on spinodal decomposition during aging of an Fe-46.5 at.% Cr alloy

Spinodal decomposition is a key phase transition in advanced materials and a significant effort is paid to the quantitative modeling of the phenomenon. The initial materials condition is often assumed to be random during modeling, but this may be an oversimplification. In this work, the effect of solution treatment above the miscibility gap, on spinodal decomposition during ...

Elastic and anelastic relaxation behaviour of perovskite multiferroics I: PbZr0.53Ti0.47O3 (PZT)–PbFe0.5Nb0.5O3 (PFN)

Perovskites in the ternary system PbTiO3 (PT)–PbZrO3 (PZ)–Pb(Fe0.5Nb0.5)O3 (PFN) have attracted close interest because they can display simultaneous ferroelectric, magnetic and ferroelastic properties. Those with the most sensitive response to external fields are likely to have compositions near the morphotropic phase boundary (MPB) which lies close to the binary join ...

Diffusion processes during cementite precipitation and their impact on electrical and thermal conductivity of a heat-treatable steel

The thermal conductivity of heat-treatable steels is highly dependent on their thermo-mechanical history and the alloying degree. Besides phase transformations like the martensitic \(\upgamma \rightarrow \upalpha ^{\prime }\) or the degree of deformation, the precipitation of carbides exerts a strong influence on the thermal conductivity of these steels. In the current work, ...

Environmental effects on the construction and physical properties of Bombyx mori cocoons

Published studies of silks focus on processed fibres or the optimum conditions for their production. Consequently, the effects of the environment on the physical properties of the cocoon are either poorly understood or kept as closely guarded industrial secrets. In this study, we test the hypothesis that silkworms as ectothermic animals respond to environmental conditions by ...

Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms

Shape-changing materials open an entirely new solution space for a wide range of disciplines: from architecture that responds to the environment and medical devices that unpack inside the body, to passive sensors and novel robotic actuators. While synthetic shape-changing materials are still in their infancy, studies of biological morphing materials have revealed key paradigms and ...

Aligned carbon nanotube–epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness

A protocol has been developed for the production of epoxy-based composites containing high-volume fractions of aligned carbon nanotubes. The nanotubes were fabricated as continuous fibres or aligned mats directly from the CVD reactor, in which they were synthesized. The block composites with highly aligned and tightly packed nanotube assemblies were prepared via epoxy resin ...