Robotics and Biomimetics

http://link.springer.com/journal/40638

List of Papers (Total 79)

Bacterial foraging-optimized PID control of a two-wheeled machine with a two-directional handling mechanism

This paper presents the performance of utilizing a bacterial foraging optimization algorithm on a PID control scheme for controlling a five DOF two-wheeled robotic machine with two-directional handling mechanism. The system under investigation provides solutions for industrial robotic applications that require a limited-space working environment. The system nonlinear mathematical...

Mobile robots exploration through cnn-based reinforcement learning

Exploration in an unknown environment is an elemental application for mobile robots. In this paper, we outlined a reinforcement learning method aiming for solving the exploration problem in a corridor environment. The learning model took the depth image from an RGB-D sensor as the only input. The feature representation of the depth image was extracted through a pre-trained...

A motion sensing-based framework for robotic manipulation

To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human–machine interaction in a novel and natural interface using gestures, has crucially inspired us to...

micROS: a morphable, intelligent and collective robot operating system

Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the...

A soft stretchable bending sensor and data glove applications

Soft sensors are required to accommodate the flexible and deformable natures of the human body in wearable device applications. They are also suitable for integration with soft robotic devices to monitor the performance status and provide references for feedback control. However, the choices for bending sensors are still highly limited. In this paper, a soft bending sensor is...

Probabilistic double guarantee kidnapping detection in SLAM

For determining whether kidnapping has happened and which type of kidnapping it is while a robot performs autonomous tasks in an unknown environment, a double guarantee kidnapping detection (DGKD) method has been proposed. The good performance of DGKD in a relative small environment is shown. However, a limitation of DGKD is found in a large-scale environment by our recent work...

Compliance control based on PSO algorithm to improve the feeling during physical human–robot interaction

Robots play more important roles in daily life and bring us a lot of convenience. But when people work with robots, there remain some significant differences in human–human interactions and human–robot interaction. It is our goal to make robots look even more human-like. We design a controller which can sense the force acting on any point of a robot and ensure the robot can move...

Integrated assembly and motion planning using regrasp graphs

This paper presents an integrated assembly and motion planning system to recursively find the assembly sequence and motions to assemble two objects with the help of a horizontal surface as the supporting fixture. The system is implemented in both assembly level and motion level. In the assembly level, the system checks all combinations of the assembly sequences and gets a set of...

A two-wheeled machine with a handling mechanism in two different directions

Despite the fact that there are various configurations of self-balanced two-wheeled machines (TWMs), the workspace of such systems is restricted by their current configurations and designs. In this work, the dynamic analysis of a novel configuration of TWMs is introduced that enables handling a payload attached to the intermediate body (IB) in two mutually perpendicular...

Kinematic analysis and fault-tolerant trajectory planning of space manipulator under a single joint failure

A space manipulator plays an important role in spacecraft capturing, repairing, maintenance, and so on. However, the harsh space environment will cause its joints fail to work. For a non-redundant manipulator, single joint locked failure will cause it to lose one degree of freedom (DOF), hence reducing its movement ability. In this paper, the key problems related to the fault...

Matching-range-constrained real-time loop closure detection with CNNs features

The loop closure detection (LCD) is an essential part of visual simultaneous localization and mapping systems (SLAM). LCD is capable of identifying and compensating the accumulation drift of localization algorithms to produce an consistent map if the loops are checked correctly. Deep convolutional neural networks (CNNs) have outperformed state-of-the-art solutions that use...

ROS-based ground stereo vision detection: implementation and experiments

This article concentrates on open-source implementation on flying object detection in cluttered scenes. It is of significance for ground stereo-aided autonomous landing of unmanned aerial vehicles. The ground stereo vision guidance system is presented with details on system architecture and workflow. The Chan–Vese detection algorithm is further considered and implemented in the...

AprilTag array-aided extrinsic calibration of camera–laser multi-sensor system

This paper presents a new algorithm for extrinsically calibrating a multi-sensor system including multiple cameras and a 2D laser scanner. On the basis of the camera pose estimation using AprilTag, we design an AprilTag array as the calibration target and employ a nonlinear optimization to calculate the single-camera extrinsic parameters when multiple tags are in the field of...

Constrained VPH+: a local path planning algorithm for a bio-inspired crawling robot with customized ultrasonic scanning sensor

This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described...

Energy-efficient control of a screw-drive pipe robot with consideration of actuator’s characteristics

Pipe robots can perform inspection tasks to alleviate the damage caused by the pipe problems. Usually, the pipe robots carry batteries or use a power cable draining power from a vehicle that has many equipments for exploration. Nevertheless, the energy is limited for the whole inspection task and cannot keep the inspection time too long. In this paper, we use the total input...

Passivity-based control of an omnidirectional mobile robot

This paper studies passivity-based trajectory tracking control of an omnidirectional mobile robot. The proposed control design is simple to be implemented in practice, because of an effective exploitation of the structure of robot dynamics. First, the passivity property of the prototype robot is analyzed. Then the control system is designed based on the energy shaping plus...

Analysis of the non-reciprocating legged gait for a hexapod robot based on the ePaddle-EGM

A novel eccentric paddle mechanism based on the epicyclic gear mechanism (ePaddle-EGM) has been proposed to enhance the mobility of amphibious robot for multi-terrain tasks with diverse locomotion gaits. This paper presents a brief description for this mechanism. Based on the feature of ePaddle-EGM, a unique non-reciprocating legged gait planning method is proposed. This method...

Design of a high-mobility multi-terrain robot based on eccentric paddle mechanism

Gaining high mobility on versatile terrains is a crucial target for designing a mobile robot toward tasks such as search and rescue, scientific exploration, and environment monitoring. Inspired by dextrous limb motion of animals, a novel form of locomotion has been established in our previous study, by proposing an eccentric paddle mechanism (ePaddle) for integrating paddling...

Human-assisted sound event recognition for home service robots

This paper proposes and implements an open framework of active auditory learning for a home service robot to serve the elderly living alone at home. The framework was developed to realize the various auditory perception capabilities while enabling a remote human operator to involve in the sound event recognition process for elderly care. The home service robot is able to estimate...

MicROS-drt: supporting real-time and scalable data distribution in distributed robotic systems

A primary requirement in distributed robotic software systems is the dissemination of data to all interested collaborative entities in a timely and scalable manner. However, providing such a service in a highly dynamic and resource-limited robotic environment is a challenging task, and existing robot software infrastructure has limitations in this aspect. This paper presents a...

Tracking control of piezoelectric actuator using adaptive model

Piezoelectric actuators (PEAs) have been widely used in micro- and nanopositioning applications due to their fine resolution, rapid responses, and large actuating forces. However, a major deficiency of PEAs is that their accuracy is seriously limited by hysteresis. This paper presents adaptive model predictive control technique for reducing hysteresis in PEAs based on...

Microdesign using frictional, hooked, attachment mechanisms: a biomimetic study of natural attachment mechanisms—Part 3

Part 1 completed the studies of five long-shafted, cellulose, frictional, hooked probabilistic fasteners. Part 2 identified three substructures prevalent in the natural world for probabilistic fasteners and detailed the collection of voxel dataclouds while measuring from the natural fluorescence of their composing chitin and cellulose under the laser illumination of a confocal...

Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry

Two-dimensional velocity fields around a freely swimming freshwater black shark fish in longitudinal (XZ) plane and transverse (YZ) plane are measured using digital particle image velocimetry (DPIV). By transferring momentum to the fluid, fishes generate thrust. Thrust is generated not only by its caudal fin, but also using pectoral and anal fins, the contribution of which...

Design of a three-segment continuum robot for minimally invasive surgery

Continuum robot, as known as snake-like robot, usually does not include rigid links and has the ability to reach into a confined space by shaping itself into smooth curves. This paper presents the design of a three-segment continuum robot for minimally invasive surgery. The continuum robot employs a single super-elastic nitinol rod as the backbone and concentric disks assembled...

Single-step collision-free trajectory planning of biped climbing robots in spatial trusses

For a biped climbing robot with dual grippers to climb poles, trusses or trees, feasible collision-free climbing motion is inevitable and essential. In this paper, we utilize the sampling-based algorithm, Bi-RRT, to plan single-step collision-free motion for biped climbing robots in spatial trusses. To deal with the orientation limit of a 5-DoF biped climbing robot, a new state...