Immunome Research

http://link.springer.com/journal/12996

List of Papers (Total 57)

A novel paradigm for cell and molecule interaction ontology: from the CMM model to IMGT-ONTOLOGY

Background Biology is moving fast toward the virtuous circle of other disciplines: from data to quantitative modeling and back to data. Models are usually developed by mathematicians, physicists, and computer scientists to translate qualitative or semi-quantitative biological knowledge into a quantitative approach. To eliminate semantic confusion between biology and other...

Coregulation mapping based on individual phenotypic variation in response to virus infection

Background Gene coregulation across a population is an important aspect of the considerable variability of the human immune response to virus infection. Methodology to investigate it must rely on a number of ingredients ranging from gene clustering to transcription factor enrichment analysis. Results We have developed a methodology to investigate the gene to gene correlations for...

Evolution of a cluster of innate immune genes (β-defensins) along the ancestral lines of chicken and zebra finch

Background Avian β-defensins (AvBDs) represent a group of innate immune genes with broad antimicrobial activity. Within the chicken genome, previous work identified 14 AvBDs in a cluster on chromosome three. The release of a second bird genome, the zebra finch, allows us to study the comparative evolutionary history of these gene clusters between from two species that shared a...

Polyfunctional CD4+ T cell responses to a set of pathogenic arenaviruses provide broad population coverage

Background Several arenaviruses cause severe hemorrhagic fever and aseptic meningitis in humans for which no licensed vaccines are available. A major obstacle for vaccine development is pathogen heterogeneity within the Arenaviridae family. Evidence in animal models and humans indicate that T cell and antibody-mediated immunity play important roles in controlling arenavirus...

Motif prediction to distinguish LPS-stimulated pro-inflammatory vs. antibacterial macrophage genes

Background Innate immunity is the first line of defence offered by host cells to infections. Macrophage cells involved in innate immunity are stimulated by lipopolysaccharide (LPS), found on bacterial cell surface, to express a complex array of gene products. Persistent LPS stimulation makes a macrophage tolerant to LPS with down regulation of inflammatory genes ("pro...

Identification of conformational B-cell Epitopes in an antigen from its primary sequence

Background One of the major challenges in the field of vaccine design is to predict conformational B-cell epitopes in an antigen. In the past, several methods have been developed for predicting conformational B-cell epitopes in an antigen from its tertiary structure. This is the first attempt in this area to predict conformational B-cell epitope in an antigen from its amino acid...

An integrated approach to epitope analysis I: Dimensional reduction, visualization and prediction of MHC binding using amino acid principal components and regression approaches

Background Operation of the immune system is multivariate. Reduction of the dimensionality is essential to facilitate understanding of this complex biological system. One multi-dimensional facet of the immune system is the binding of epitopes to the MHC-I and MHC-II molecules by diverse populations of individuals. Prediction of such epitope binding is critical and several...

An integrated approach to epitope analysis II: A system for proteomic-scale prediction of immunological characteristics

Background Improving our understanding of the immune response is fundamental to developing strategies to combat a wide range of diseases. We describe an integrated epitope analysis system which is based on principal component analysis of sequences of amino acids, using a multilayer perceptron neural net to conduct QSAR regression predictions for peptide binding affinities to 35...

NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure

Background Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Predicting which peptides bind to an MHC-II molecule is therefore...

DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells

Background The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based...

Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis

Background Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to...

Human immunome, bioinformatic analyses using HLA supermotifs and the parasite genome, binding assays, studies of human T cell responses, and immunization of HLA-A*1101 transgenic mice including novel adjuvants provide a foundation for HLA-A03 restricted CD8+T cell epitope based, adjuvanted vaccine protective against Toxoplasma gondii

Background Toxoplasmosis causes loss of life, cognitive and motor function, and sight. A vaccine is greatly needed to prevent this disease. The purpose of this study was to use an immmunosense approach to develop a foundation for development of vaccines to protect humans with the HLA-A03 supertype. Three peptides had been identified with high binding scores for HLA-A03 supertypes...

Factors important in evolutionary shaping of immunoglobulin gene loci

Background The extraordinary diversity characterizing the antibody repertoire is generated by both evolution and lymphocyte development. Much of this diversity is due to the existence of immunoglobulin (Ig) variable region gene segment libraries, which were diversified during evolution and, in higher vertebrates, are used in generating the combinatorial diversity of antibody...

Models of RNA virus evolution and their roles in vaccine design

Viruses are fast evolving pathogens that continuously adapt to the highly variable environments they live and reproduce in. Strategies devoted to inhibit virus replication and to control their spread among hosts need to cope with these extremely heterogeneous populations and with their potential to avoid medical interventions. Computational techniques such as phylogenetic methods...

Recent advances in B-cell epitope prediction methods

Identification of epitopes that invoke strong responses from B-cells is one of the key steps in designing effective vaccines against pathogens. Because experimental determination of epitopes is expensive in terms of cost, time, and effort involved, there is an urgent need for computational methods for reliable identification of B-cell epitopes. Although several computational...

State of the art and challenges in sequence based T-cell epitope prediction

Sequence based T-cell epitope predictions have improved immensely in the last decade. From predictions of peptide binding to major histocompatibility complex molecules with moderate accuracy, limited allele coverage, and no good estimates of the other events in the antigen-processing pathway, the field has evolved significantly. Methods have now been developed that produce highly...

Computer aided selection of candidate vaccine antigens

Immunoinformatics is an emergent branch of informatics science that long ago pullulated from the tree of knowledge that is bioinformatics. It is a discipline which applies informatic techniques to problems of the immune system. To a great extent, immunoinformatics is typified by epitope prediction methods. It has found disappointingly limited use in the design and discovery of...

Applying bioinformatics for antibody epitope prediction using affinity-selected mimotopes – relevance for vaccine design

To properly characterize protective polyclonal antibody responses, it is necessary to examine epitope specificity. Most antibody epitopes are conformational in nature and, thus, cannot be identified using synthetic linear peptides. Cyclic peptides can function as mimetics of conformational epitopes (termed mimotopes), thereby providing targets, which can be selected by...

T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges

Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation...

Bioinformatics analysis of Brucellavaccines and vaccine targets using VIOLIN

Background Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://​www.​violinet.​org) is a web-based...

Model refinement through high-performance computing: an agent-based HIV example

Background Recent advances in Immunology highlighted the importance of local properties on the overall progression of HIV infection. In particular, the gastrointestinal tract is seen as a key area during early infection, and the massive cell depletion associated with it may influence subsequent disease progression. This motivated the development of a large-scale agent-based model...

Stacking and energetic contribution of aromatic islands at the binding interface of antibody proteins

Background The enrichment and importance of some aromatic residues, such as Tyr and Trp, have been widely noticed at the binding interfaces of antibodies from many experimental and statistical results, some of which were even identified as “hot spots” contributing significantly greater to the binding affinity than other amino acids. However, how these aromatic residues influence...

TAP Hunter: a SVM-based system for predicting TAP ligands using local description of amino acid sequence

Background Selective peptide transport by the transporter associated with antigen processing (TAP) represents one of the main candidate mechanisms that may regulate the presentation of antigenic peptides to HLA class I molecules. Because TAP-binding preferences may significant impact T-cell epitope selection, there is great interest in applying computational techniques to...

Clustering-based identification of clonally-related immunoglobulin gene sequence sets

Background Clonal expansion of B lymphocytes coupled with somatic mutation and antigen selection allow the mammalian humoral immune system to generate highly specific immunoglobulins (IG) or antibodies against invading bacteria, viruses and toxins. The availability of high-throughput DNA sequencing methods is providing new avenues for studying this clonal expansion and...

pDOCK: a new technique for rapid and accurate docking of peptide ligands to Major Histocompatibility Complexes

Background Identification of antigenic peptide epitopes is an essential prerequisite in T cell-based molecular vaccine design. Computational (sequence-based and structure-based) methods are inexpensive and efficient compared to experimental approaches in screening numerous peptides against their cognate MHC alleles. In structure-based protocols, suited to alleles with limited...