Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13 TeV

Journal of High Energy Physics, Jun 2018

Abstract The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13 TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p > 2 GeV/c in the pseudorapidity range 2 < η < 5 is determined to be σacc = 62.2 ± 0.2 ± 2.5 mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section σinel = 75.4 ± 3.0 ± 4.5 mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7 TeV is also reported. Open image in new window

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP06%282018%29100.pdf

Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13 TeV

Accepted: June Measurement of the inelastic pp cross-section at a The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13 TeV is measured with the LHCb detector. The elastic interactions producing at least one prompt long-lived charged particle with momentum p > 2 GeV/c in the pseudorapidity range 2 < < 5 is determined to be acc = Global features; Hadron-Hadron scattering (experiments); Minimum bias - HJEP06(218) The LHCb collaboration 0:2 2:5 mb. The rst uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section inel = 75:4 3:0 4:5 mb, where the rst uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7 TeV is also reported. https://doi.org/10.1007/JHEP06(2018)100 1 Introduction 2 3 4 5 6 Detector and data samples Analysis method Measurement of the ducial cross-section Extrapolation to full phase space Summary and conclusions The LHCb collaboration This paper presents a measurement of the inelastic proton-proton cross-section at p s = 13 TeV, which is the highest collision energy reached so far at any particle accelerator. The measurement is performed with the LHCb detector in the pseudorapidity range 2 < < 5. Other measurements of the inelastic proton-proton cross-section at LHC energies have been reported by the ALICE [8] (2.76 and 7 TeV), ATLAS [9{12] (7, 8 and 13 TeV), CMS [13, 14] (7 and 13 TeV), LHCb [15] (7 TeV) and TOTEM [16{21] (7, 8 and 13 TeV) collaborations, covering also central and very forward rapidities. 2 Detector and data samples The LHCb detector [22, 23] is a single-arm forward spectrometer, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system { 1 { consisting of a silicon-strip vertex detector surrounding the interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of momentum p of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV=c. The minimum distance of a track to a primary vertex (PV), the impact parameter, is measured with a resolution of (15 + 29=pT) m, where pT is the component of the momentum transverse to the beam, in GeV=c. Di erent types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identi ed by a calorimeter system consisting of scintillatingpad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identi ed by a system composed of alternating layers of iron and multiwire proportional chambers. The online event selection for this measurement is based on unbiased triggers, which randomly accept a small subset of all bunch crossings. The bulk of the recorded data are from collisions between leading bunches in the bunch trains of the LHC lling pattern [24], thus largely reducing background from previous bunch crossings. Data were collected for both polarities of the LHCb dipole magnet to test for magnetic- eld dependent systematic e ects. The total data sample consists of 691 million events in 49 runs from 8 LHC lls, recorded in 2015 between July 8 and August 13. A run corresponds to a data set recorded under stable conditions and for a duration of up to one hour. Data from a long ll are spread over several runs. The integrated luminosity of this data set was determined in a separate study. The standard way to determine the relative luminosity in LHCb is based on continuous monitoring of the rate of interactions with at least two tracks reconstructed in the vertex detector [ 25 ]. This is done online by applying the empty-event counting method (see section 3) to a dedicated set of randomly sampled events that are partially reconstructed in the trigger. The integrated luminosity is obtained by dividing the number of those interactions by their \reference" cross-section. With independent data from a dedicated LHC ll at p s = 13 TeV, this reference cross-section was determined to be 63.4 mb with an uncertainty of 3.9%, using the beam-gas imaging method as described in ref. [ 25 ]. For the unbiased data from leading bunch crossings the number of partially reconstructed events for the luminosity measurement is much smaller than the number of fully reconstructed events available for o ine analysis. Therefore, to obtain precise relative luminosity measurements that permit sensitive studies of systematic e ects, the empty-event counting method is applied to the fully reconstructed events. The analysis is performed per leading bunch crossing and in time intervals of O(1s), thereby minimising systematic uncertainties due to di erences in the individual bunch currents and variations of the instantaneous interaction rates. Di erences between the partial reconstruction in the trigger and the full reconstruction result in a di erence of about 1% in the visible interaction rates. The ratio was measured with a statistical uncertainty of 0.2%. Accounting for this di erence and taking the absolute calibration from the beam gas imaging method, a total integrated luminosity of 10.7 nb 1 is obtained for the full data set, with an uncertainty of 4%, which is domi{ 2 { nated by the 3.9% uncertainty on the reference cross-section. Additional contributions are the 0.2% statistical uncertainty of the cross-calibration factor and a 0.8% di erence when requiring at least one reconstructed primary vertex instead of two vertex-detector tracks. Simulated events are used to study the detector response and e ects of the reconstruction chain. In the simulation, proton-proton collisions for both magnet polarities are generated using Pythia 8 [ 26, 27 ] with a speci c LHCb con guration [28]. Decays of hadronic particles are described by EvtGen [29], in which nal-state radiation is generated using Photos [30]. The interaction of the generated particles with the detector, and its response, are implemented using the Geant4 toolkit [31, 32] as described in ref. [33]. 3 Analysis method The primary measurement is a ducial cross-section, de ned as the cross-section for protonproton collisions with at least one prompt, long-lived charged particle with momentum p > 2 GeV/c and pseudorapidity in the range 2 < < 5. A particle is de ned as \longlived" if its lifetime is larger than 30 ps, and it is prompt if it is produced directly in the primary collision or if none of its ancestors is long-lived. At the LHCb experiment a lifetime of 30 ps corresponds to a typical ight length of O(100) mm. According to this de nition, for instance, ground-state hyperons are long-lived, but not any particle containing charm or beauty quarks. The experimental selection of prompt long-lived charged particles requires well reconstructed charged tracks with momentum p > 2 GeV/c and 2 < < 5 that traverse the entire LHCb tracking system and have an estimated point of origin located longitudinally (along the beam direction) within 200 mm and transversally within 0.4 mm of the average PV position in the run. From a parametrisation of the PV density by a threedimensional Gaussian function, the estimated point of origin is determined as that point on the particle trajectory, parametrised by a straight line, where the PV density is highest. With this selection all events can be used in the analysis, independently of whether a PV was reconstructed. The above requirements select almost exclusively inelastic interactions. From about 8.7 million elastic proton-proton scattering processes in the simulation none is accepted. The cross-section measurement exploits the fact that the recorded event sample is unbiased, with the number of inelastic interactions per event drawn from a Poisson distribution. The average number of interactions per event can then be inferred from the fraction p0 of empty events, = ln p0, and for a given number Nevt of events the ducial cross-section is given by acc = ( L bkg)Nevt ; (3.1) where L is the integrated luminosity of the event sample. The number bkg of background interactions per event is estimated from bunch crossings where only the bunch from one of the beams was populated. The largest background levels are found for the rst LHC ll used in the analysis, with bkg= around 1%. The cross-section measurement is performed { 3 { HJEP06(218) separately for all leading bunch crossings, and in time intervals of O(8s) to follow variations of the interaction rate during a run. The determination of the empty-event probability p0 takes into account that, because of ine ciencies, events may be wrongly tagged as empty, and that events which have no prompt long-lived charged particle inside the ducial region can be classi ed as non-empty because of misreconstructed tracks. For the measurement presented here, the detector related e ects are accounted for by an approach that relates p0 to the observed charged track multiplicity distribution inside the ducial region. A good approximation for the low-multiplicity events that dominate the empty-event counting is the assumption that on average the detector response is the same for every true particle. In other words, the multiplicity distribution of reconstructed tracks is assumed to be the same for every true particle. As shown below, in this case p0 can be determined from the observed multiplicity distribution of long-lived prompt charged tracks in the detector acceptance. The relation between p0 and experimentally accessible information can be derived starting from the probability generating function (PGF) of the observed multiplicity distribution Fq(x) = P n qnxn, where the probability qn to observe n tracks is weighted by the n-th power of a continuous variable x. It can be shown that the PGF of a convolution of two discrete probability distributions is the product of the individual PGFs. Introducing G(x) as the PGF of the multiplicity distribution that is reconstructed for a single true particle, the PGF for the case of k true particles is the PGF of the convolution of k single particle distributions, i.e. the k-th power Gk(x). Weighting each true multiplicity k with its probability pk, the relation between the PGF of the observed multiplicity distribution qn and the true multiplicity distribution pk is given by The parameter is the only detector-related parameter of the analysis. It is an unfolding parameter that relates p0 to the observed charged particle multiplicity distribution in the ducial region. For an ideal detector it would be zero. For a given experiment the value of depends mainly on the average reconstruction e ciency. Assuming for example a binomial detector response, where a particle is either reconstructed with e ciency " or missed, one has G(x) = (1 ") + "x and thus = (" 1)=", which is always negative. When taking p0 and qn from fully simulated events and solving eq. (3.3) for , one obtains an e ective parameter that also accounts for higher-order e ects due to background tracks and nonlinear detector response. For proton-proton collisions at high centre-of-mass energies, where inelastic interactions have high multiplicity nal states, and for data with a small average number of { 4 { 1 n=0 1 k=0 Fq(x) = X qnxn = X pk Gk(x) : in the range between 0.4 and 1.4 and values of q0 that are at least an order of magnitude larger than the values qn for n > 0. With a typical value 0:6 the values of p0 are on average only about 3% smaller than their leading-order estimates q0, which results in robust cross-section measurements even in case of sizeable systematic uncertainties on . 4 Measurement of the ducial cross-section The inelastic ducial cross-section is determined separately for all runs recorded with unbiased triggers and, within a run, all leading bunch crossings. In total 243 independent measurements are done, with di erent lling patterns of the LHC, di erent bunch currents and both magnet polarities. For each measurement an initial estimate for the unfolding parameter is obtained from a simulation that has been weighted to match the average reconstructed track multiplicity in data. This initial value is then corrected to account for di erences between data and simulation in the average track reconstruction e ciency and the average fraction of misreconstructed tracks. The e ciency correction uses an independent calibration for the analysed data set, determined as described in ref. [34]. The fraction of misreconstructed tracks is estimated from the fraction of tracks rejected by the track selection criteria, with a constant of proportionality taken from simulation. The observed di erences between data and simulation are propagated into by means of a simpli ed model that relates it to the average track reconstruction e ciency and the fraction of misreconstructed tracks. The individual cross-section measurements are combined in a weighted average, assuming uncorrelated statistical and fully correlated systematic uncertainties. The weight of each measurement is proportional to the integrated luminosity of the corresponding data set, resulting in an overall ducial cross-section acc = 62:237 0:002 mb, where the uncertainty is purely statistical. The contributions to the systematic uncertainty are summarised in table 1. The dominant contribution is the 4% uncertainty on the integrated luminosity. The intrinsic uncertainty of the analysis is driven by a 16% uncertainty on the unfolding parameter , which propagates into a 0.25% systematic uncertainty on acc. The largest contribution is due to the di erence between either determining from all simulated events or only from events with particles inside the ducial region. The systematic uncertainties due to the e ciency calibration and the di erences in the fraction of misreconstructed tracks between data and simulation, where the full size of the correction is assigned as a systematic uncertainty, are slightly smaller. χ2/ndf=18.3/32 χ2/ndf=36.8/83 indicates the systematic uncertainty on the overall average due to the unfolding parameter . The 2-values for the averages inside a ll are calculated with only the statistical uncertainties and the number of degrees of freedom (ndf) is one less than the number of individual results contributing to the average. Systematic uncertainties inferred from the observed spread between the lls are discussed in the text. variables corresponds to an additional systematic uncertainty of 0:05%. Also given in gure 1 are the 2-values of the individual averages, calculated with only the statistical uncertainties. Inspection of the 2-values shows that, except for the last ll, the agreement between the results within one ll is actually better than expected. This is due to the fact that the luminosity calibration and the inelastic cross-section measurement are correlated by the use of information recorded by the vertex detector. The average for the last ll, which in comparison to the others has an enlarged 2 value, is dominated by two runs with more than 100 million events. This points to the existence of additional systematic e ects of about the size of the statistical uncertainty of this average, which in view of the other uncertainties are negligible. Cross-checks from variations of the track selection criteria show no indication of additional systematic e ects. 5 Extrapolation to full phase space The extrapolation from the ducial cross-section acc to the total inelastic cross-section inel = FT acc follows the same approach as in ref. [15]. The extrapolation factor FT { 6 { HJEP06(218) Integrated luminosity Unfolding parameter | Interactions not in acceptance | E ciency | Misreconstructed tracks Luminous region and background Total Relative uncertainty are given for the fractions fX of the inelastic cross-section, the fractions vX of interactions inside the acceptance and, for those interactions, the average numbers of long-lived prompt charged particles nch;X inside the acceptance. is determined from generator-level simulations. Neglecting interference e ects between di erent contributions, it is assumed that the total inelastic cross-section can be written as an incoherent sum of distinct contributions X X inel = X with X 2 fND; SDA; SDB; DDg : (5.1) Here ND is the non-di ractive cross-section, SDA and SDB are the single di ractive contributions with the di ractively excited system travelling towards (A) or away (B) from the detector, which have the same cross-section but di erent contributions to the visible cross-section, and DD is the double di ractive cross-section. State-of-the-art event generators are assumed to provide a realistic parametrisation of the properties of the various contributions. This has been studied with the 32 proton-proton tunes that come with Pythia 8.230 [35] and which do not require external libraries. Table 2 gives mean values and standard deviations of the fractions fX of the inelastic cross-section, the fractions vX of interactions with at least one prompt long-lived charged particle within the acceptance and, for those interactions, the average multiplicities nch;X of those particles inside the acceptance. Given the fractions fX of the total inelastic cross-section and the fractions of visible interactions vX , the extrapolation factor FT is FT = P P X X X X vX = 1 P X fX vX : { 7 { (5.2) Taking the standard deviations from table 2 as model uncertainties would likely underestimate the uncertainty of the extrapolation factor, since in particular the cross-section fracperformed by the ALICE collaboration at p s = 7 TeV [8]. tions have a much smaller spread than the uncertainties obtained in a measurement of the di ractive contributions to the inelastic cross-section, fSD = 0:20+00::0047 and fDD = 0:12+00::0054, To reduce the model dependence in the determination of FT, the cross-section fractions are considered to be a priori unknown and only subject to the constraint P The extrapolation factor is estimated from sets ffX g that uniformly sample the subspace de ned by this constraint. For each set ffX g the extrapolation factor FT and the average X fX = 1. multiplicity nch = P X fX nch;X inside the ducial region are calculated using vX and nch;X from table 2. The spread of the di erent tunes is propagated into the extrapolation factor by drawing vX and nch;X from Gaussian distributions with mean values and standard deviations as given in the table. An additional experimental constraint is imposed by assigning a Gaussian weight w = exp( (nch N )2=2 N2 ) to ffX g and FT, where N = 13:9 0:9 is the average multiplicity per interaction of prompt long-lived charged particles inside the acceptance in the data. The numerical value for this constraint is obtained from the full simulation, tuned to reproduce the observed average multiplicity per event and corrected for di erences between data and simulation in the average track reconstruction e ciency and the fraction of tracks that are associated to a true particle. Figure 2 shows the posterior densities (fX ) and (FT) of the cross-section fractions fX found to be fSsiDm = 0:21 and f DsiDm = 0:18, consistent with measurements at p and the cross-section extrapolation factor FT. The mean values of the fractions of fX are s = 7 TeV [8]. The resulting cross-section extrapolation factor is FT = 1:211 0:072, which yields a total inelastic cross-section of inel = 75:4 3:0(exp) where the rst uncertainty is due to the experimental uncertainty of the ducial crosssection and the second due to the cross-section extrapolation. Summing all uncertainties in quadrature one nds inel = 75:4 Summary and conclusions A measurement is presented of the inelastic proton-proton cross-section with at least one prompt long-lived charged particle with momentum p > 2 GeV/c in the pseudorapidity range 2 < < 5. A particle is de ned as \long-lived" if its lifetime is larger than 30 ps, and it is prompt if it is produced directly in the primary interaction or if none of its ancestors is long-lived. The measurement is done with the empty-event counting method applied to unbiased data. A total of 691 million events is analysed. The statistical uncertainty of the overall result is negligible. The systematic uncertainty has contributions from the integrated luminosity (4%), the unfolding parameter (0.25%) and vertical location and extension of the luminous region and background levels (0.05%). Adding all uncertainties not related to the integrated luminosity in quadrature, the nal result for the ducial { 8 { ) ) cross­section fraction f X 1 Extrapolating to the full phase space yields a total inelastic cross-section of inel( s = 13 TeV) = 75:4 3:0(exp) 4:5(extr) mb : Since the publication of a measurement of the inelastic proton-proton cross-section at a centre-of-mass energy of 7 TeV by the LHCb collaboration [15] an improved calibration of the luminosity scale has become available [ 25 ]. The new value of the reference cross-section for the integrated luminosity of the data analysed for the previous measurement is 2.7% larger than the initial estimate and the uncertainty has been reduced from 3.5% to 1.7%. With the analysis of ref. [15] unchanged, the updated cross-section is inel( s = 7 TeV) = 68:7 2:1(exp) which supersedes the previous result. The experimental uncertainty is reduced from 4.3% to 3.0% and the central value shifted up by 2.7%. A comparison of the total inelastic cross-section measurements from proton-proton collisions at the LHC is shown in gure 3. The new LHCb measurement at p s = 13 TeV is in good agreement with the measurements by the ATLAS [12] and TOTEM [21] collaborations. In the LHC energy range the dependence of the inelastic cross-section on p s is well described by a power law. Acknowledgments We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative sta at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (The SD { 9 { ALICE ATLAS LHCb TOTEM 10 of-mass energies of 2.76, 7, 8 and 13 TeV. Results are shown from the ALICE [8], ATLAS [9{12] and TOTEM [16{21] collaborations. For better visibility, measurements at the same energy are drawn at slightly displaced locations. The error bars show the total uncertainties, with positive and negative uncertainties of the respective results independently added in quadrature. The line shows the result from a power-law t. Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (U.S.A.). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (U.S.A.). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), ANR, Labex P2IO and OCEVU, and Region Auvergne-Rho^ne-Alpes (France), Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China), RFBR, RSF and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, the Royal Society, the English-Speaking Union and the Leverhulme Trust (United Kingdom). Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. [arXiv:1408.0288] [INSPIRE]. [INSPIRE]. Rev. 123 (1961) 1053 [INSPIRE]. [4] M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. [5] A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1., Nuovo Cim. A 42 (1965) 930 [INSPIRE]. [6] A. Donnachie and P.V. Landsho , pp and pp total cross sections and elastic scattering, Phys. Lett. B 727 (2013) 500 [Erratum ibid. B 750 (2015) 669] [arXiv:1309.1292] [INSPIRE]. [arXiv:0904.3724] [INSPIRE]. [8] ALICE collaboration, Measurement of inelastic, single- and double-di raction cross sections in proton-proton collisions at the LHC with ALICE, Eur. Phys. J. C 73 (2013) 2456 [arXiv:1208.4968] [INSPIRE]. [9] ATLAS collaboration, Measurement of the inelastic proton-proton cross-section at p s = 7 TeV with the ATLAS detector, Nature Commun. 2 (2011) 463 [arXiv:1104.0326] [INSPIRE]. [10] ATLAS collaboration, Measurement of the total cross section from elastic scattering in pp s = 7 TeV with the ATLAS detector, Nucl. Phys. B 889 (2014) 486 collisions at p [arXiv:1408.5778] [INSPIRE]. collisions at p [arXiv:1607.06605] [INSPIRE]. [11] ATLAS collaboration, Measurement of the total cross section from elastic scattering in pp s = 8 TeV with the ATLAS detector, Phys. Lett. B 761 (2016) 158 [12] ATLAS collaboration, Measurement of the inelastic proton-proton cross section at ps = 13 TeV with the ATLAS detector at the LHC, Phys. Rev. Lett. 117 (2016) 182002 [arXiv:1606.02625] [INSPIRE]. [13] CMS collaboration, Measurement of the inelastic proton-proton cross section at ps = 7 TeV, Phys. Lett. B 722 (2013) 5 [arXiv:1210.6718] [INSPIRE]. TeV, arXiv:1802.02613 [INSPIRE]. [14] CMS collaboration, Measurement of the inelastic proton-proton cross section at ps = 13 of ps = 7 TeV, JHEP 02 (2015) 129 [arXiv:1412.2500] [INSPIRE]. [15] LHCb collaboration, Measurement of the inelastic pp cross-section at a centre-of-mass energy energy of p s = 7 TeV, EPL 96 (2011) 21002 [arXiv:1110.1395] [INSPIRE]. [16] G. Antchev et al., First measurement of the total proton-proton cross section at the LHC [17] TOTEM collaboration, G. Antchev et al., Measurement of proton-proton elastic scattering and total cross-section at ps = 7 TeV, Europhys. Lett. 101 (2013) 21002 [INSPIRE]. cross-section at p s = 7 TeV, Europhys. Lett. 101 (2013) 21003 [INSPIRE]. [18] TOTEM collaboration, G. Antchev et al., Measurement of proton-proton inelastic scattering elastic and inelastic cross-sections at p s = 7 TeV, Europhys. Lett. 101 (2013) 21004 [20] TOTEM collaboration, G. Antchev et al., Luminosity-independent measurement of the proton-proton total cross section at p s = 8 TeV, Phys. Rev. Lett. 111 (2013) 012001 [21] TOTEM collaboration, G. Antchev et al., First measurement of elastic, inelastic and total s = 13 TeV by TOTEM and overview of cross-section data at LHC cross-section at p energies, arXiv:1712.06153 [INSPIRE]. [arXiv:1412.6352] [INSPIRE]. [arXiv:1410.0149] [INSPIRE]. [22] LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE]. (2006) 026 [hep-ph/0603175] [INSPIRE]. [28] LHCb collaboration, Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE]. [29] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE]. [30] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE]. [31] GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE]. Instrum. Meth. A 506 (2003) 250 [INSPIRE]. [32] GEANT4 collaboration, S. Agostinelli et al., GEANT4 | a simulation toolkit, Nucl. [33] LHCb collaboration, The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE]. [34] LHCb collaboration, Measurement of the track reconstruction e ciency at LHCb, 2015 JINST 10 P02007 [arXiv:1408.1251] [INSPIRE]. 159 [arXiv:1410.3012] [INSPIRE]. [35] T. Sjostrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) R. Aaij43, B. Adeva39, M. Adinol 48, Z. Ajaltouni5, S. Akar59, J. Albrecht10, F. Alessio40, M. Alexander53, A. Alfonso Albero38, S. Ali43, G. Alkhazov31, P. Alvarez Cartelle55, A.A. Alves Jr59, S. Amato2, S. Amerio23, Y. Amhis7, L. An3, L. Anderlini18, G. Andreassi41, M. Andreotti17;g, J.E. Andrews60, R.B. Appleby56, F. Archilli43, P. d'Argent12, J. Arnau Romeu6, A. Artamonov37, M. Artuso61, E. Aslanides6, M. Atzeni42, G. Auriemma26, S. Bachmann12, J.J. Back50, C. Baesso62, S. Baker55, V. Balagura7;b, W. Baldini17, A. Baranov35, R.J. Barlow56, S. Barsuk7, W. Barter56, F. Baryshnikov32, V. Batozskaya29, V. Battista41, A. Bay41, J. Beddow53, F. Bedeschi24, I. Bediaga1, A. Beiter61, L.J. Bel43, N. Beliy63, V. Bellee41, N. Belloli21;i, K. Belous37, I. Belyaev32;40, E. Ben-Haim8, G. Bencivenni19, S. Benson43, S. Beranek9, A. Berezhnoy33, R. Bernet42, D. Berningho 12, E. Bertholet8, A. Bertolin23, C. Betancourt42, F. Betti15;40, M.O. Bettler49, M. van Beuzekom43, Ia. Bezshyiko42, S. Bifani47, P. Billoir8, A. Birnkraut10, A. Bizzeti18;u, M. Bj rn57, T. Blake50, F. Blanc41, S. Blusk61, V. Bocci26, T. Boettcher58, A. Bondar36;w, N. Bondar31, S. Borghi56;40, M. Borisyak35, M. Borsato39, F. Bossu7, M. Boubdir9, T.J.V. Bowcock54, E. Bowen42, C. Bozzi17;40, S. Braun12, M. Brodski40, J. Brodzicka27, D. Brundu16, E. Buchanan48, C. Burr56, A. Bursche16, J. Buytaert40, W. Byczynski40, S. Cadeddu16, H. Cai64, R. Calabrese17;g, R. Calladine47, M. Calvi21;i, M. Calvo Gomez38;m, A. Camboni38;m, P. Campana19, D.H. Campora Perez40, L. Capriotti56, A. Carbone15;e, G. Carboni25, R. Cardinale20;h, A. Cardini16, P. Carniti21;i, L. Carson52, K. Carvalho Akiba2, G. Casse54, L. Cassina21, M. Cattaneo40, G. Cavallero20;h, R. Cenci24;t, D. Chamont7, M.G. Chapman48, M. Charles8, Ph. Charpentier40, G. Chatzikonstantinidis47, M. Chefdeville4, S. Chen16, S.-G. Chitic40, V. Chobanova39, M. Chrzaszcz40, A. Chubykin31, P. Ciambrone19, X. Cid Vidal39, G. Ciezarek40, P.E.L. Clarke52, M. Clemencic40, H.V. Cli 49, J. Closier40, V. Coco40, J. Cogan6, E. Cogneras5, V. Cogoni16;f, L. Cojocariu30, P. Collins40, T. Colombo40, A. Comerma-Montells12, A. Contu16, G. Coombs40, S. Coquereau38, G. Corti40, M. Corvo17;g, C.M. Costa Sobral50, B. Couturier40, G.A. Cowan52, D.C. Craik58, A. Crocombe50, M. Cruz Torres1, R. Currie52, C. D'Ambrosio40, F. Da Cunha Marinho2, C.L. Da Silva73, E. Dall'Occo43, J. Dalseno48, A. Davis3, O. De Aguiar Francisco40, K. De Bruyn40, S. De Capua56, M. De Cian12, J.M. De Miranda1, L. De Paula2, M. De Serio14;d, P. De Simone19, C.T. Dean53, D. Decamp4, L. Del Buono8, B. Delaney49, H.-P. Dembinski11, M. Demmer10, A. Dendek28, D. Derkach35, O. Deschamps5, F. Dettori54, B. Dey65, A. Di Canto40, P. Di Nezza19, S. Didenko69, H. Dijkstra40, F. Dordei40, M. Dorigo40, A. Dosil Suarez39, L. Douglas53, A. Dovbnya45, K. Dreimanis54, L. Dufour43, G. Dujany8, P. Durante40, J.M. Durham73, D. Dutta56, R. Dzhelyadin37, M. Dziewiecki12, A. Dziurda40, A. Dzyuba31, S. Easo51, U. Egede55, V. Egorychev32, S. Eidelman36;w, S. Eisenhardt52, U. Eitschberger10, R. Ekelhof10, L. Eklund53, S. Ely61, A. Ene30, S. Escher9, S. Esen12, H.M. Evans49, T. Evans57, A. Falabella15, N. Farley47, S. Farry54, D. Fazzini21;40;i, L. Federici25, G. Fernandez38, P. Fernandez Declara40, A. Fernandez Prieto39, F. Ferrari15, L. Ferreira Lopes41, F. Ferreira Rodrigues2, M. Ferro-Luzzi40, S. Filippov34, R.A. Fini14, M. Fiorini17;g, M. Firlej28, C. Fitzpatrick41, T. Fiutowski28, F. Fleuret7;b, M. Fontana16;40, F. Fontanelli20;h, R. Forty40, V. Franco Lima54, M. Frank40, C. Frei40, J. Fu22;q, W. Funk40, C. Farber40, E. Gabriel52, A. Gallas Torreira39, D. Galli15;e, S. Gallorini23, S. Gambetta52, M. Gandelman2, P. Gandini22, Y. Gao3, L.M. Garcia Martin71, J. Garc a Pardin~as39, J. Garra Tico49, L. Garrido38, D. Gascon38, C. Gaspar40, L. Gavardi10, G. Gazzoni5, D. Gerick12, E. Gersabeck56, M. Gersabeck56, T. Gershon50, Ph. Ghez4, S. Gian 41, V. Gibson49, O.G. Girard41, L. Giubega30, K. Gizdov52, V.V. Gligorov8, D. Golubkov32, A. Golutvin55;69, A. Gomes1;a, I.V. Gorelov33, C. Gotti21;i, E. Govorkova43, J.P. Grabowski12, R. Graciani Diaz38, HJEP06(218) P. Gri th16, L. Grillo56, L. Gruber40, B.R. Gruberg Cazon57, O. Grunberg67, E. Gushchin34, Yu. Guz37, T. Gys40, C. Gobel62, T. Hadavizadeh57, C. Hadjivasiliou5, G. Haefeli41, C. Haen40, S.C. Haines49, B. Hamilton60, X. Han12, T.H. Hancock57, S. Hansmann-Menzemer12, N. Harnew57, S.T. Harnew48, C. Hasse40, M. Hatch40, J. He63, M. Hecker55, K. Heinicke10, A. Heister9, K. Hennessy54, L. Henry71, E. van Herwijnen40, M. He 67, A. Hicheur2, D. Hill57, P.H. Hopchev41, W. Hu65, W. Huang63, Z.C. Huard59, W. Hulsbergen43, T. Humair55, M. Hushchyn35, D. Hutchcroft54, P. Ibis10, M. Idzik28, P. Ilten47, R. Jacobsson40, J. Jalocha57, E. Jans43, A. Jawahery60, F. Jiang3, M. John57, D. Johnson40, C.R. Jones49, C. Joram40, B. Jost40, N. Jurik57, S. Kandybei45, M. Karacson40, J.M. Kariuki48, S. Karodia53, N. Kazeev35, M. Kecke12, F. Keizer49, M. Kelsey61, M. Kenzie49, T. Ketel44, E. Khairullin35, B. Khanji12, C. Khurewathanakul41, K.E. Kim61, T. Kirn9, S. Klaver19, K. Klimaszewski29, T. Klimkovich11, S. Koliiev46, M. Kolpin12, R. Kopecna12, P. Koppenburg43, S. Kotriakhova31, M. Kozeiha5, L. Kravchuk34, M. Kreps50, F. Kress55, P. Krokovny36;w, W. Krupa28, W. Krzemien29, W. Kucewicz27;l, M. Kucharczyk27, V. Kudryavtsev36;w, A.K. Kuonen41, T. Kvaratskheliya32;40, D. Lacarrere40, G. La erty56, A. Lai16, G. Lanfranchi19, C. Langenbruch9, T. Latham50, C. Lazzeroni47, R. Le Gac6, A. Le at33;40, J. Lefrancois7, R. Lefevre5, F. Lemaitre40, E. Lemos Cid39, P. Lenisa17, O. Leroy6, T. Lesiak27, B. Leverington12, P.-R. Li63, T. Li3, Y. Li7, Z. Li61, X. Liang61, T. Likhomanenko68, R. Lindner40, F. Lionetto42, V. Lisovskyi7, X. Liu3, D. Loh50, A. Loi16, I. Longsta 53, J.H. Lopes2, D. Lucchesi23;o, M. Lucio Martinez39, A. Lupato23, E. Luppi17;g, O. Lupton40, A. Lusiani24, X. Lyu63, F. Machefert7, F. Maciuc30, V. Macko41, P. Mackowiak10, S. Maddrell-Mander48, O. Maev31;40, K. Maguire56, D. Maisuzenko31, M.W. Majewski28, S. Malde57, B. Malecki27, A. Malinin68, T. Maltsev36;w, G. Manca16;f, G. Mancinelli6, D. Marangotto22;q, J. Maratas5;v, J.F. Marchand4, U. Marconi15, C. Marin Benito38, M. Marinangeli41, P. Marino41, J. Marks12, G. Martellotti26, M. Martin6, M. Martinelli41, D. Martinez Santos39, F. Martinez Vidal71, A. Massa erri1, R. Matev40, R. Oldeman16;f, C.J.G. Onderwater72, A. Ossowska27, J.M. Otalora Goicochea2, P. Owen42, A. Oyanguren71, P.R. Pais41, A. Palano14, M. Palutan19;40, G. Panshin70, A. Papanestis51, M. Pappagallo52, L.L. Pappalardo17;g, W. Parker60, C. Parkes56, G. Passaleva18;40, A. Pastore14, M. Patel55, C. Patrignani15;e, A. Pearce40, A. Pellegrino43, G. Penso26, M. Pepe Altarelli40, S. Perazzini40, D. Pereima32, P. Perret5, L. Pescatore41, K. Petridis48, A. Petrolini20;h, A. Petrov68, M. Petruzzo22;q, B. Pietrzyk4, G. Pietrzyk41, M. Pikies27, D. Pinci26, F. Pisani40, A. Pistone20;h, A. Piucci12, V. Placinta30, S. Playfer52, M. Plo Casasus39, F. Polci8, M. Poli Lener19, A. Poluektov50, N. Polukhina69, I. Polyakov61, E. Polycarpo2, G.J. Pomery48, C. Prouve48, V. Pugatch46, A. Puig Navarro42, H. Pullen57, G. Punzi24;p, W. Qian63, J. Qin63, R. Quagliani8, B. Quintana5, B. Rachwal28, J.H. Rademacker48, M. Rama24, M. Ramos Pernas39, M.S. Rangel2, I. Raniuk45;y, F. Ratnikov35;x, G. Raven44, M. Ravonel Salzgeber40, M. Reboud4, HJEP06(218) S. Richards48, K. Rinnert54, P. Robbe7, A. Robert8, A.B. Rodrigues41, E. Rodrigues59, J.A. Rodriguez Lopez66, A. Rogozhnikov35, S. Roiser40, A. Rollings57, V. Romanovskiy37, A. Romero Vidal39;40, M. Rotondo19, M.S. Rudolph61, T. Ruf40, J. Ruiz Vidal71, J.J. Saborido Silva39, N. Sagidova31, B. Saitta16;f , V. Salustino Guimaraes62, C. Sanchez Mayordomo71, B. Sanmartin Sedes39, R. Santacesaria26, C. Santamarina Rios39, M. Santimaria19, E. Santovetti25;j , G. Sarpis56, A. Sarti19;k, C. Satriano26;s, A. Satta25, D.M. Saunders48, D. Savrina32;33, S. Schael9, M. Schellenberg10, M. Schiller53, H. Schindler40, M. Schmelling11, T. Schmelzer10, B. Schmidt40, O. Schneider41, A. Schopper40, H.F. Schreiner59, M. Schubiger41, M.H. Schune7;40, R. Schwemmer40, B. Sciascia19, A. Sciubba26;k, A. Semennikov32, E.S. Sepulveda8, A. Sergi47, N. Serra42, J. Serrano6, L. Sestini23, P. Seyfert40, M. Shapkin37, Y. Shcheglov31;y, T. Shears54, L. Shekhtman36;w, V. Shevchenko68, B.G. Siddi17, R. Silva Coutinho42, L. Silva de Oliveira2, G. Simi23;o, S. Simone14;d, N. Skidmore12, T. Skwarnicki61, I.T. Smith52, M. Smith55, l. Soares Lavra1, M.D. Sokolo 59, F.J.P. Soler53, B. Souza De Paula2, B. Spaan10, P. Spradlin53, F. Stagni40, M. Stahl12, S. Stahl40, P. Stefko41, S. Stefkova55, O. Steinkamp42, S. Stemmle12, O. Stenyakin37, M. Stepanova31, H. Stevens10, S. Stone61, B. Storaci42, S. Stracka24;p, M.E. Stramaglia41, M. Straticiuc30, U. Straumann42, S. Strokov70, J. Sun3, L. Sun64, K. Swientek28, V. Syropoulos44, T. Szumlak28, M. Szymanski63, S. T'Jampens4, A. Tayduganov6, T. Tekampe10, G. Tellarini17, F. Teubert40, E. Thomas40, J. van Tilburg43, M.J. Tilley55, V. Tisserand5, M. Tobin41, S. Tolk40, L. Tomassetti17;g, D. Tonelli24, R. Tourinho Jadallah Aoude1, E. Tourne er4, M. Traill53, M.T. Tran41, M. Tresch42, A. Trisovic49, A. Tsaregorodtsev6, A. Tully49, N. Tuning43;40, A. Ukleja29, A. Usachov7, A. Ustyuzhanin35, U. Uwer12, C. Vacca16;f , A. Vagner70, V. Vagnoni15, A. Valassi40, S. Valat40, G. Valenti15, R. Vazquez Gomez40, P. Vazquez Regueiro39, S. Vecchi17, M. van Veghel43, J.J. Velthuis48, M. Veltri18;r, G. Veneziano57, A. Venkateswaran61, T.A. Verlage9, M. Vernet5, M. Vesterinen57, J.V. Viana Barbosa40, D. Vieira63, M. Vieites Diaz39, H. Viemann67, X. Vilasis-Cardona38;m, A. Vitkovskiy43, M. Vitti49, V. Volkov33, A. Vollhardt42, B. Voneki40, A. Vorobyev31, V. Vorobyev36;w, C. Vo 9, J.A. de Vries43, C. Vazquez Sierra43, R. Waldi67, J. Walsh24, J. Wang61, Y. Wang65, D.R. Ward49, H.M. Wark54, N.K. Watson47, D. Websdale55, A. Weiden42, C. Weisser58, M. Whitehead9, J. Wicht50, G. Wilkinson57, M. Wilkinson61, M.R.J. Williams56, M. Williams58, T. Williams47, F.F. Wilson51;40, J. Wimberley60, M. Winn7, J. Wishahi10, W. Wislicki29, M. Witek27, G. Wormser7, S.A. Wotton49, K. Wyllie40, Y. Xie65, M. Xu65, Q. Xu63, Z. Xu3, Z. Xu4, Z. Yang3, Z. Yang60, Y. Yao61, H. Yin65, J. Yu65, X. Yuan61, O. Yushchenko37, K.A. Zarebski47, M. Zavertyaev11;c, L. Zhang3, Y. Zhang7, A. Zhelezov12, Y. Zheng63, X. Zhu3, V. Zhukov9;33, J.B. Zonneveld52, S. Zucchelli15 1 Centro Brasileiro de Pesquisas F sicas (CBPF), Rio de Janeiro, Brazil 2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil 3 Center for High Energy Physics, Tsinghua University, Beijing, China 4 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France 5 Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France 6 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France 7 LAL, Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Orsay, France 8 LPNHE, Universite Pierre et Marie Curie, Universite Paris Diderot, CNRS/IN2P3, Paris, France 9 I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany 10 Fakultat Physik, Technische Universitat Dortmund, Dortmund, Germany 11 Max-Planck-Institut fur Kernphysik (MPIK), Heidelberg, Germany 12 Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg, Germany 13 School of Physics, University College Dublin, Dublin, Ireland HJEP06(218) 15 Sezione INFN di Bologna, Bologna, Italy 16 Sezione INFN di Cagliari, Cagliari, Italy 17 Universita e INFN, Ferrara, Ferrara, Italy 18 Sezione INFN di Firenze, Firenze, Italy 19 Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy 20 Sezione INFN di Genova, Genova, Italy 21 Sezione INFN di Milano Bicocca, Milano, Italy 22 Sezione di Milano, Milano, Italy 23 Sezione INFN di Padova, Padova, Italy 24 Sezione INFN di Pisa, Pisa, Italy 25 Sezione INFN di Roma Tor Vergata, Roma, Italy 26 Sezione INFN di Roma La Sapienza, Roma, Italy Krakow, Poland Romania 27 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland 28 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, 29 National Center for Nuclear Research (NCBJ), Warsaw, Poland 30 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, 31 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia 32 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia 33 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia 34 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia 35 Yandex School of Data Analysis, Moscow, Russia 36 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia 37 Institute for High Energy Physics (IHEP), Protvino, Russia 38 ICCUB, Universitat de Barcelona, Barcelona, Spain 39 Instituto Galego de F sica de Altas Enerx as (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain 40 European Organization for Nuclear Research (CERN), Geneva, Switzerland 41 Institute of Physics, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland 42 Physik-Institut, Universitat Zurich, Zurich, Switzerland 43 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands 44 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands 45 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine 46 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine 47 University of Birmingham, Birmingham, United Kingdom 48 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom 49 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 50 Department of Physics, University of Warwick, Coventry, United Kingdom 51 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom 52 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom 53 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom 54 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom 55 Imperial College London, London, United Kingdom 56 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 57 Department of Physics, University of Oxford, Oxford, United Kingdom 58 Massachusetts Institute of Technology, Cambridge, MA, United States 59 University of Cincinnati, Cincinnati, OH, United States 60 University of Maryland, College Park, MD, United States 61 Syracuse University, Syracuse, NY, United States 64 School of Physics and Technology, Wuhan University, Wuhan, China, associated to3 65 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, 66 Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to8 67 Institut fur Physik, Universitat Rostock, Rostock, Germany, associated to12 68 National Research Centre Kurchatov Institute, Moscow, Russia, associated to32 69 National University of Science and Technology MISIS, Moscow, Russia, associated to32 70 National Research Tomsk Polytechnic University, Tomsk, Russia, associated to32 71 Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, 72 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to43 73 Los Alamos National Laboratory (LANL), Los Alamos, United States, associated to61 a Universidade Federal do Tria^ngulo Mineiro (UFTM), Uberaba-MG, Brazil b Laboratoire Leprince-Ringuet, Palaiseau, France c P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia l AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland m LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain w Novosibirsk State University, Novosibirsk, Russia x National Research University Higher School of Economics, Moscow, Russia y Escuela Agr cola Panamericana, San Antonio de Oriente, Honduras y Deceased [1] T. Pierog et al., EPOS LHC : test of collective hadronization with data measured at the CERN Large Hadron Collider , Phys. Rev. C 92 ( 2015 ) 034906 [arXiv: 1306 .0121] [INSPIRE]. [2] M. di Mauro , F. Donato , A. Goudelis and P.D. Serpico , New evaluation of the antiproton production cross section for cosmic ray studies , Phys. Rev. D 90 ( 2014 ) 085017 [3] G. Giesen et al., AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter , JCAP 09 ( 2015 ) 023 [arXiv: 1504 .04276] [7] A. Martin , The Froissart bound for inelastic cross-sections , Phys. Rev. D 80 ( 2009 ) 065013 [19] TOTEM collaboration, G. Antchev et al., Luminosity-independent measurements of total , [23] LHCb collaboration, LHCb detector performance , Int. J. Mod. Phys. A 30 ( 2015 ) 1530022 [24] L. Evans and P. Bryant , LHC machine, 2008 JINST 3 S08001 [INSPIRE]. [25] LHCb collaboration , Precision luminosity measurements at LHCb , 2014 JINST 9 P12005 [26] T. Sj ostrand, S. Mrenna and P.Z. Skands , A brief introduction to PYTHIA 8.1, Comput . Phys. Commun . 178 ( 2008 ) 852 [arXiv: 0710 .3820] [INSPIRE]. [27] T. Sj ostrand, S. Mrenna and P.Z. Skands , PYTHIA 6 . 4 physics and manual , JHEP 05


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP06%282018%29100.pdf

The LHCb collaboration, R. Aaij, B. Adeva, M. Adinolfi, Z. Ajaltouni, S. Akar, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Albero, S. Ali, G. Alkhazov, P. Alvarez Cartelle, A. A. Alves, S. Amato, S. Amerio, Y. Amhis, L. An, L. Anderlini, G. Andreassi, M. Andreotti, J. E. Andrews, R. B. Appleby, F. Archilli, P. d’Argent, J. Arnau Romeu, A. Artamonov, M. Artuso, E. Aslanides, M. Atzeni, G. Auriemma, S. Bachmann, J. J. Back, C. Baesso, S. Baker, V. Balagura, W. Baldini, A. Baranov, R. J. Barlow, S. Barsuk, W. Barter, F. Baryshnikov, V. Batozskaya, V. Battista, A. Bay, J. Beddow, F. Bedeschi, I. Bediaga, A. Beiter, L. J. Bel, N. Beliy, V. Bellee, N. Belloli, K. Belous, I. Belyaev, E. Ben-Haim, G. Bencivenni, S. Benson, S. Beranek, A. Berezhnoy, R. Bernet, D. Berninghoff, E. Bertholet, A. Bertolin, C. Betancourt, F. Betti, M. O. Bettler, M. van Beuzekom, Ia. Bezshyiko, S. Bifani, P. Billoir, A. Birnkraut, A. Bizzeti, M. Bjørn, T. Blake, F. Blanc, S. Blusk, V. Bocci, T. Boettcher, A. Bondar, N. Bondar, S. Borghi, M. Borisyak, M. Borsato, F. Bossu, M. Boubdir, T. J. V. Bowcock, E. Bowen, C. Bozzi, S. Braun, M. Brodski, J. Brodzicka, D. Brundu, E. Buchanan, C. Burr, A. Bursche, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, R. Calabrese, R. Calladine, M. Calvi, M. Calvo Gomez, A. Camboni, P. Campana, D. H. Campora Perez, L. Capriotti, A. Carbone, G. Carboni, R. Cardinale, A. Cardini, P. Carniti, L. Carson, K. Carvalho Akiba, G. Casse, L. Cassina, M. Cattaneo, G. Cavallero, R. Cenci, D. Chamont, M. G. Chapman, M. Charles, Ph. Charpentier, G. Chatzikonstantinidis, M. Chefdeville, S. Chen, S.-G. Chitic, V. Chobanova, M. Chrzaszcz, A. Chubykin, P. Ciambrone, X. Cid Vidal, G. Ciezarek, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, V. Coco, J. Cogan, E. Cogneras, V. Cogoni, L. Cojocariu, P. Collins, T. Colombo, A. Comerma-Montells, A. Contu, G. Coombs, S. Coquereau, G. Corti, M. Corvo, C. M. Costa Sobral, B. Couturier, G. A. Cowan, D. C. Craik, A. Crocombe, M. Cruz Torres, R. Currie, C. D’Ambrosio, F. Da Cunha Marinho, C. L. Da Silva, E. Dall’Occo, J. Dalseno, A. Davis, O. De Aguiar Francisco, K. De Bruyn, S. De Capua, M. De Cian, J. M. De Miranda, L. De Paula, M. De Serio, P. De Simone, C. T. Dean, D. Decamp, L. Del Buono, B. Delaney, H.-P. Dembinski, M. Demmer, A. Dendek, D. Derkach, O. Deschamps, F. Dettori, B. Dey, A. Di Canto, P. Di Nezza, S. Didenko, H. Dijkstra, F. Dordei, M. Dorigo, A. Dosil Suárez, L. Douglas, A. Dovbnya, K. Dreimanis, L. Dufour, G. Dujany, P. Durante, J. M. Durham, D. Dutta, R. Dzhelyadin, M. Dziewiecki, A. Dziurda, A. Dzyuba, S. Easo, U. Egede, V. Egorychev, S. Eidelman, S. Eisenhardt, U. Eitschberger, R. Ekelhof, L. Eklund, S. Ely, A. Ene, S. Escher, S. Esen, H. M. Evans, T. Evans, A. Falabella, N. Farley, S. Farry, D. Fazzini, L. Federici, G. Fernandez, P. Fernandez Declara, A. Fernandez Prieto, F. Ferrari, L. Ferreira Lopes, F. Ferreira Rodrigues, M. Ferro-Luzzi, S. Filippov, R. A. Fini, M. Fiorini, M. Firlej, C. Fitzpatrick, T. Fiutowski, F. Fleuret, M. Fontana, F. Fontanelli, R. Forty, V. Franco Lima, M. Frank, C. Frei, J. Fu, W. Funk, C. Färber, E. Gabriel, A. Gallas Torreira, D. Galli, S. Gallorini, S. Gambetta, M. Gandelman, P. Gandini, Y. Gao, L. M. Garcia Martin, J. García Pardiñas, J. Garra Tico, L. Garrido, D. Gascon, C. Gaspar, L. Gavardi, G. Gazzoni, D. Gerick, E. Gersabeck, M. Gersabeck, T. Gershon, Ph. Ghez, S. Gianì, V. Gibson, O. G. Girard, L. Giubega, K. Gizdov, V. V. Gligorov, D. Golubkov, A. Golutvin, A. Gomes, I. V. Gorelov, C. Gotti, E. Govorkova, J. P. Grabowski, R. Graciani Diaz, L. A. Granado Cardoso, E. Graugés, E. Graverini, G. Graziani, A. Grecu, R. Greim, P. Griffith, L. Grillo, L. Gruber, B. R. Gruberg Cazon, O. Grünberg, E. Gushchin, Yu. Guz, T. Gys, C. Göbel, T. Hadavizadeh, C. Hadjivasiliou, G. Haefeli, C. Haen, S. C. Haines, B. Hamilton, X. Han, T. H. Hancock, S. Hansmann-Menzemer, N. Harnew, S. T. Harnew, C. Hasse, M. Hatch, J. He, M. Hecker, K. Heinicke, A. Heister, K. Hennessy, L. Henry, E. van Herwijnen, M. Heß, A. Hicheur, D. Hill, P. H. Hopchev, W. Hu, W. Huang, Z. C. Huard, W. Hulsbergen, T. Humair, M. Hushchyn, D. Hutchcroft, P. Ibis, M. Idzik, P. Ilten, R. Jacobsson, J. Jalocha, E. Jans, A. Jawahery, F. Jiang, M. John, D. Johnson, C. R. Jones, C. Joram, B. Jost, N. Jurik, S. Kandybei, M. Karacson, J. M. Kariuki, S. Karodia, N. Kazeev, M. Kecke, F. Keizer, M. Kelsey, M. Kenzie, T. Ketel, E. Khairullin, B. Khanji, C. Khurewathanakul, K. E. Kim, T. Kirn, S. Klaver, K. Klimaszewski, T. Klimkovich, S. Koliiev, M. Kolpin, R. Kopecna, P. Koppenburg, S. Kotriakhova, M. Kozeiha, L. Kravchuk, M. Kreps, F. Kress, P. Krokovny, W. Krupa, W. Krzemien, W. Kucewicz, M. Kucharczyk, V. Kudryavtsev, A. K. Kuonen, T. Kvaratskheliya, D. Lacarrere, G. Lafferty, A. Lai, G. Lanfranchi, C. Langenbruch, T. Latham, C. Lazzeroni, R. Le Gac, A. Leflat, J. Lefrançois, R. Lefèvre, F. Lemaitre, E. Lemos Cid, P. Lenisa, O. Leroy, T. Lesiak, B. Leverington, P.-R. Li. Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13 TeV, Journal of High Energy Physics, 2018, 100, DOI: 10.1007/JHEP06(2018)100