Ghosts- and tachyon-free regions of the Randall-Sundrum model parameter space

Journal of High Energy Physics, Jul 2018

Abstract Model building within the Randall-Sundrum (RS) framework generally involves placing the Standard Model fields in the bulk. Such fields may possess non-zero values for their associated brane-localized kinetic terms (BLKTs) in addition to possible bulk mass parameters. In this paper we clearly identify the regions of the RS model parameter space where the presence of bulk mass terms and BLKTs yield a setup which is free from both ghost and tachyon instabilities. Such physically acceptable parameter space regions can then be used to construct realistic and phenomenologically viable RS models.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP07%282018%29117.pdf

Ghosts- and tachyon-free regions of the Randall-Sundrum model parameter space

Journal of High Energy Physics July 2018, 2018:117 | Cite as Ghosts- and tachyon-free regions of the Randall-Sundrum model parameter space AuthorsAuthors and affiliations G. N. WojcikJ. L. HewettT. G. Rizzo Open Access Regular Article - Theoretical Physics First Online: 18 July 2018 Received: 27 February 2018 Accepted: 07 July 2018 13 Downloads Abstract Model building within the Randall-Sundrum (RS) framework generally involves placing the Standard Model fields in the bulk. Such fields may possess non-zero values for their associated brane-localized kinetic terms (BLKTs) in addition to possible bulk mass parameters. In this paper we clearly identify the regions of the RS model parameter space where the presence of bulk mass terms and BLKTs yield a setup which is free from both ghost and tachyon instabilities. Such physically acceptable parameter space regions can then be used to construct realistic and phenomenologically viable RS models. Keywords Phenomenology of Field Theories in Higher Dimensions  ArXiv ePrint: 1802.05731 Download to read the full article text Notes Open Access This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE]. [2] J.L. Hewett and M. Spiropulu, Particle physics probes of extra space-time dimensions, Ann. Rev. Nucl. Part. Sci. 52 (2002) 397 [hep-ph/0205106] [INSPIRE]. [3] C. Csáki, TASI lectures on extra dimensions and branes, in From fields to strings: Circumnavigating theoretical physics. Ian Kogan memorial collection. Volume 2, M. Shifman, A. Vainshtein and J. Wheater eds., World Scientific (2005) [hep-ph/0404096] [INSPIRE]. [4] E. Ponton, TASI 2011: Four Lectures on TeV Scale Extra Dimensions, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: The Dark Secrets of the Terascale. (TASI 2011), Colorado, U.S.A., 6 June-11 July 2011, World Scientific (2013), pp. 283-374 [arXiv:1207.3827] [INSPIRE]. [5] S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE]. [6] T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE]. [7] S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor Physics in the Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE]. [8] S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [INSPIRE]. [9] H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Experimental probes of localized gravity: On and off the wall, Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041] [INSPIRE]. [10] M. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE]. [11] K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE]. [12] J.L. Hewett, F.J. Petriello and T.G. Rizzo, Precision measurements and fermion geography in the Randall-Sundrum model revisited, JHEP 09 (2002) 030 [hep-ph/0203091] [INSPIRE]. [13] T.G. Rizzo and J.D. Wells, Electroweak precision measurements and collider probes of the standard model with large extra dimensions, Phys. Rev. D 61 (2000) 016007 [hep-ph/9906234] [INSPIRE]. [14] U.K. Dey and T.S. Ray, Higgs-Gluon Coupling in Warped Extra Dimensional Models with Brane Kinetic Terms, Phys. Rev. D 93 (2016) 011901 [arXiv:1507.04357] [INSPIRE]. [15] S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The Custodial Randall-Sundrum Model: From Precision Tests to Higgs Physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].CrossRefMATHADSGoogle Scholar [16] Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE]. [17] H. Georgi, A.K. Grant and G. Hailu, Brane couplings from bulk loops, Phys. Lett. B 506 (2001) 207 [hep-ph/0012379] [INSPIRE]. [18] M. Carena, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [INSPIRE]. [19] F. del Aguila, M. Pérez-Victoria and J. Santiago, Bulk fields with general brane kinetic terms, JHEP 02 (2003) 051 [hep-th/0302023] [INSPIRE].MathSciNetCrossRefGoogle Scholar [20] H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Brane localized curvature for warped gravitons, JHEP 08 (2003) 034 [hep-ph/0305086] [INSPIRE]. [21] H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Brane localized kinetic terms in the Randall-Sundrum model, Phys. Rev. D 68 (2003) 045002 [hep-ph/0212279] [INSPIRE]. [22] W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE]. [23] M. Carena, A. Delgado, E. Ponton, T.M.P. Tait and C.E.M. Wagner, Warped fermions and precision tests, Phys. Rev. D 71 (2005) 015010 [hep-ph/0410344] [INSPIRE]. [24] F. del Aguila, M. Pérez-Victoria and J. Santiago, Some consequences of brane kinetic terms for bulk fermions, in proceedings of the 38th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 15-22 March 2003, hep-ph/0305119 [INSPIRE]. [25] B.M. Dillon, D.P. George and K.L. McDonald, Regarding the Radion in Randall-Sundrum Models with Brane Curvature, Phys. Rev. D 94 (2016) 064045 [arXiv:1605.03087] [INSPIRE]. [26] T.G. Rizzo, Warped phenomenology of higher-derivative gravity, JHEP 01 (2005) 028 [hep-ph/0412087] [INSPIRE]. [27] Wolfram Research, Inc., Mathematica. Version 10.2, Champaign Illinois U.S.A. (2015).Google Scholar [28] H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE]. [29] A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [INSPIRE]. [30] J.L. Hewett and T.G. Rizzo, 750 GeV Diphoton Resonance in Warped Geometries, arXiv:1603.08250 [INSPIRE]. Copyright information © The Author(s) 2018 Authors and Affiliations G. N. Wojcik1Email authorJ. L. Hewett1T. G. Rizzo11.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP07%282018%29117.pdf

G. N. Wojcik, J. L. Hewett, T. G. Rizzo. Ghosts- and tachyon-free regions of the Randall-Sundrum model parameter space, Journal of High Energy Physics, 2018, 117, DOI: 10.1007/JHEP07(2018)117