A Compact Printed Quadruple Band-Notched UWB Antenna

International Journal of Antennas and Propagation, Mar 2013

A novel compact coplanar waveguide- (CPW-) fed ultrawideband (UWB) printed planar volcano-smoke antenna (PVSA) with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://downloads.hindawi.com/journals/ijap/2013/956898.pdf

A Compact Printed Quadruple Band-Notched UWB Antenna

A Compact Printed Quadruple Band-Notched UWB Antenna Xiaoyin Li, Lianshan Yan, Wei Pan, and Bin Luo School of Information Science & Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China Received 10 December 2012; Accepted 18 February 2013 Academic Editor: Alfonso Muñoz-Acevedo Copyright © 2013 Xiaoyin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract A novel compact coplanar waveguide- (CPW-) fed ultrawideband (UWB) printed planar volcano-smoke antenna (PVSA) with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands. 1. Introduction Ultrawideband (UWB) technology has received considerable attention due to its high speed data rates, low power consumption, resistant to severe multipath and jamming, and so on. The UWB antenna as a key part of UWB communication systems is also being investigated increasingly in recent years [1, 2]. Various types of UWB antennas with wide band and simple fabrication have developed. However, there are several existing frequency bands, that is, IEEE 802.11a (5.15–5.35 and 5.725–5.825 GHz), downlink of X-band satellite communication systems (7.25~7.75 GHz), and ITU band (8.01~8.5 GHz), which may cause mutual interference with UWB signals [2–5]. In order to avoid interferences with these existing frequency bands, one way is to add band-stop filters to UWB antennas, which may lead to high cost and large size to UWB transceivers. The emerging of the band-notched antenna makes it possible for integrating the filter into the antenna. There are many approaches demonstrated to create band-notches in UWB antennas [2–13]. Generally, the existing techniques widely used to achieve band-notch can be classified into the following two categories: adding and etching resonator units to the antenna [3, 6, 12]. The first method focuses on adding diverse parasitic elements on the antenna, such as strip near radiator patch in [3, 4] and split ring resonators (SRRs) near feed line in [5]. Another effective method is etching various slots in the antenna, such as arc-shaped slot [8, 9], U-shaped slot [10], square-shaped slot [11], and SRR-shaped slot [12]. By employing parasitic strips and etching slots at the same time [11, 14], multiple band-notched functions could be achieved. However, most of the examples can only provide two or three notched bands because of the space restrictions and coupling between band-notched structures; nevertheless, only limited ones can achieve four notched bands [3, 15]. In this paper, a modified planar volcano-smoke antenna (PVSA) is considered to cover the UWB range. The design parameters of the resonator units that affect the resonator frequency based on both of the parasitic elements method and etching slots method are discussed. Subsequently a four band-notched UWB antenna for filtering the WLAN, downlink of X-band satellite communication systems, and ITU band signals is proposed and demonstrated. Band-notch characteristics are achieved by embedding a C-shaped parasitic strip, two C-shaped slots, and a U-shaped slot on the patch. Details of designing the proposed antenna with simulations and measurements are carried out. The configuration of the proposed antenna is shown in Section 2. Both of the simulated and measured results including voltage-standing wave ratio (VSWR), radiation patterns, and peak gain are shown in Section 3. A conclusion will be drawn in Section 4. 2. Antenna Design The proposed quadruple band-notched antenna is based on a planar volcano-smoke antenna that covers the UWB frequency range, whose structure is shown in Figure 1(a) [4, 16, 17]. The based antenna uses FR4 substrate with the dimensions of  mm3, relative permittivity , and a loss tangent of 0.02. The antenna is fed by a CPW line which is designed for 50 Ω characteristic impedance with 1.8 mm feed line width ( ) and 0.2 mm ground gap. Through simulations with the software Ansoft High Frequency Structure Simulator (HFSS), the optimal dimensions of the designed PVSA are listed as follows:  mm,  mm,  mm,  mm,  mm,  mm,  mm,  mm,  mm, and  mm. In order to eliminate interferences from WLAN, downlink of X-band satellite communication systems, and ITU band, antenna-filtering techniques by etching slots (...truncated)


This is a preview of a remote PDF: http://downloads.hindawi.com/journals/ijap/2013/956898.pdf

Xiaoyin Li, Lianshan Yan, Wei Pan, Bin Luo. A Compact Printed Quadruple Band-Notched UWB Antenna, International Journal of Antennas and Propagation, 2013, 2013, DOI: 10.1155/2013/956898