Deriving Freshwater Quality Criteria for Iron, Lead, Nickel, and Zinc for Protection of Aquatic Life in Malaysia

The Scientific World Journal, Aug 2012

Freshwater quality criteria for iron (Fe), lead (Pb), nickel (Ni), and zinc (Zn) were developed with particular reference to aquatic biota in Malaysia, and based on USEPA’s guidelines. Acute toxicity tests were performed on eight different freshwater domestic species in Malaysia which were Macrobrachium lanchesteri (prawn), two fish: Poecilia reticulata and Rasbora sumatrana, Melanoides tuberculata (snail), Stenocypris major (ostracod), Chironomus javanus (midge larvae), Nais elinguis (annelid), and Duttaphrynus melanostictus (tadpole) to determine 96 h LC50 values for Fe, Pb, Ni, and Zn. The final acute value (FAV) for Fe, Pb, Ni, and Zn were 74.5, 17.0, 165, and 304.9 μg L−1, respectively. Using an estimated acute-to-chronic ratio (ACR) of 8.3, the value for final chronic value (FCV) was derived. Based on FAV and FCV, a criterion maximum concentration (CMC) and a criterion continuous concentration (CCC) for Fe, Pb, Ni, and Zn that are 37.2, 8.5, 82.5, and 152.4 μg L−1 and 9.0, 2.0, 19.9, and 36.7 μg L−1, respectively, were derived. The results of this study provide useful data for deriving national or local water quality criteria for Fe, Pb, Ni, and Zn based on aquatic biota in Malaysia. Based on LC50 values, this study indicated that N. elinguis, M. lanchesteri, N. elinguis, and R. sumatrana were the most sensitive to Fe, Pb, Ni, and Zn, respectively.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

http://downloads.hindawi.com/journals/tswj/2012/861576.pdf

Deriving Freshwater Quality Criteria for Iron, Lead, Nickel, and Zinc for Protection of Aquatic Life in Malaysia

Deriving Freshwater Quality Criteria for Iron, Lead, Nickel, and Zinc for Protection of Aquatic Life in Malaysia M. Shuhaimi-Othman, Y. Nadzifah, R. Nur-Amalina, and N. S. Umirah School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Selangor, 43600 Bangi, Malaysia Received 9 May 2012; Accepted 22 May 2012 Academic Editors: H. Grant and R. Pohjanvirta Copyright © 2012 M. Shuhaimi-Othman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Freshwater quality criteria for iron (Fe), lead (Pb), nickel (Ni), and zinc (Zn) were developed with particular reference to aquatic biota in Malaysia, and based on USEPA’s guidelines. Acute toxicity tests were performed on eight different freshwater domestic species in Malaysia which were Macrobrachium lanchesteri (prawn), two fish: Poecilia reticulata and Rasbora sumatrana, Melanoides tuberculata (snail), Stenocypris major (ostracod), Chironomus javanus (midge larvae), Nais elinguis (annelid), and Duttaphrynus melanostictus (tadpole) to determine 96 h LC50 values for Fe, Pb, Ni, and Zn. The final acute value (FAV) for Fe, Pb, Ni, and Zn were 74.5, 17.0, 165, and 304.9 μg L−1, respectively. Using an estimated acute-to-chronic ratio (ACR) of 8.3, the value for final chronic value (FCV) was derived. Based on FAV and FCV, a criterion maximum concentration (CMC) and a criterion continuous concentration (CCC) for Fe, Pb, Ni, and Zn that are 37.2, 8.5, 82.5, and 152.4 μg L−1 and 9.0, 2.0, 19.9, and 36.7 μg L−1, respectively, were derived. The results of this study provide useful data for deriving national or local water quality criteria for Fe, Pb, Ni, and Zn based on aquatic biota in Malaysia. Based on LC50 values, this study indicated that N. elinguis, M. lanchesteri, N. elinguis, and R. sumatrana were the most sensitive to Fe, Pb, Ni, and Zn, respectively. 1. Introduction Metal contamination has been shown to have serious effects on both the environment and humans. Malaysia, as a developing country, is no exception and faces metal pollution caused especially by anthropogenic activities such as manufacturing, agriculture, sewage, and motor vehicle emissions [1, 2]. Studies on metals in water and sediments indicate that some rivers in Malaysia were contaminated with As, Ag, Cd, Cu, Pb, and Zn and some coastal sediments were contaminated by Pb, Zn, and Cd [1–4]. However, Malaysia has a lack of water quality criteria (WQC) based on local aquatic biota. The existing water quality standards (WQSs) for metals in Malaysia (National Water Quality Standards) are based mainly on foreign criteria or standards, which have different environmental conditions compared to Malaysia. Many factors (physical, chemical, and biological) are known to affect the toxicity of metals to aquatic organisms. These factors, especially the differences in taxonomic composition of Malaysian waters compared to those for which WQSs were developed, could result in foreign water quality criteria or standards that are overprotective or underprotective for aquatic ecosystems in Malaysia. In order to protect aquatic ecosystems in Malaysia, it is necessary to develop WQC for metals based on the responses of domestic aquatic biota with local environmental factors. This information could also be used to determine sensitive and potential organisms as bioindicator for metal pollution especially in Malaysia. Metals such as Fe, Pb, Ni, and Zn are released from natural sources as well as human activity. Despite the adverse effects of metals on the environment and organisms, some metals are essential to living organisms. Zn plays an important role as a prosthetic group for the enzyme carbonic anhydrase while Fe in the respiratory protein haemoglobin [5]. Toxicity testing is an essential tool for assessing the effect and fate of toxicants in aquatic ecosystems and has been widely used as a tool to identify suitable organisms as a bioindicator and to derive water quality standards for chemicals [6]. Macroinvertebrate as a test organisms in toxicity tests have several valuable characteristics such as their widespread distribution and common occurrence in freshwater, their ecological importance and ease of handling during testing, as well as their rapid growth, short life cycle and sensitivity to contaminants [7, 8]. Therefore, these organisms have the potential to act as a bioindicator of heavy metals pollution in an aquatic environment and as organisms for toxicity testing. USEPA [9] produced technical guidelines to give an objective way of deriving numerical national WQC. Acute to chronic ratios (ACRs) have been used extensively in ecological risk assessment to estimate the chronic toxicity of chemicals in aquatic organisms for which acute toxicity is known but data regar (...truncated)


This is a preview of a remote PDF: http://downloads.hindawi.com/journals/tswj/2012/861576.pdf

M. Shuhaimi-Othman, Y. Nadzifah, R. Nur-Amalina, N. S. Umirah. Deriving Freshwater Quality Criteria for Iron, Lead, Nickel, and Zinc for Protection of Aquatic Life in Malaysia, The Scientific World Journal, 2012, 2012, DOI: 10.1100/2012/861576