Detection of the spatial patterns of water storage variation over China in recent 70 years

Scientific Reports, Jul 2017

Terrestrial water storage (TWS) variation is crucial for global hydrological cycles and water resources management under climatic changes. In the previous studies, changes in water storage of some part of China have been studied with GRACE data in recent ten years. However, the spatial pattern of changes in water storage over China may be different in a long period. Here, we aimed to present long-term spatial patterns of TWS over China between 1948 to 2015 by unique Global Land Data Assimilation System Version 2 data and identify possible factors to water storage changes. The results revealed that the inner-annual variations in TWS of China exhibited remarkable downward trends with decreased rate of 0.1 cm/yr. Meanwhile, we found that spatial patterns of TWS in China can be divided into three distinct sub-regions of TWS region with increased, TWS region with decreased, TWS region with insignificant variation. The Northeast had decreased trends (−0.05 cm/yr) due to climate change and anthropogenic activities. Urban expansion is a non-ignorable factor to TWS reduction in Jing-Jin-Ji region (r = 0.61); the west had increased from 1948 to 2015 (0.03 cm/yr) due to precipitation increased and recharge by glacier melt; the south had insignificant trends and TWS varied with precipitation (r = 0.78).

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://www.nature.com/articles/s41598-017-06558-5.pdf

Detection of the spatial patterns of water storage variation over China in recent 70 years

Abstract Terrestrial water storage (TWS) variation is crucial for global hydrological cycles and water resources management under climatic changes. In the previous studies, changes in water storage of some part of China have been studied with GRACE data in recent ten years. However, the spatial pattern of changes in water storage over China may be different in a long period. Here, we aimed to present long-term spatial patterns of TWS over China between 1948 to 2015 by unique Global Land Data Assimilation System Version 2 data and identify possible factors to water storage changes. The results revealed that the inner-annual variations in TWS of China exhibited remarkable downward trends with decreased rate of 0.1 cm/yr. Meanwhile, we found that spatial patterns of TWS in China can be divided into three distinct sub-regions of TWS region with increased, TWS region with decreased, TWS region with insignificant variation. The Northeast had decreased trends (−0.05 cm/yr) due to climate change and anthropogenic activities. Urban expansion is a non-ignorable factor to TWS reduction in Jing-Jin-Ji region (r = 0.61); the west had increased from 1948 to 2015 (0.03 cm/yr) due to precipitation increased and recharge by glacier melt; the south had insignificant trends and TWS varied with precipitation (r = 0.78). Introduction Terrestrial water storage (TWS) variation is crucial for global hydrological cycles and water resources management under climatic changes. However, TWS distributed unevenly in different regions and there would be serious losses as extreme droughts occurred. Therefore, it is necessary to detect spatial patterns of TWS, especially for China. Although there are several large rivers and vast amounts of wetlands in China, water shortage is persistent problem in some areas (e.g. Gansu, located in western China), because of certain climatic condition and the uneven distribution of water resources. In recent decades, several extreme droughts affected most parts of China1, 2, affecting many people and resulting in serious losses. The hydrological process and water resource management have been important topics of concern. Ground measurement datasets derived from hydrologic stations could be used to estimate terrestrial water storage (TWS) variation with hydrological models. However, the datasets cannot meet the requirement of water storage change research at a large scale3. The Gravity Recovery and Climate Experiment (GRACE) satellite launched in 2002 has provided a new and effective method for water resource research4. It provides monthly change information about the mass distribution on the Earth’s surface5. Numerous researchers have acquired terrestrial water storage change information from GRACE measurements. Ndehendehe et al. (2016) successfully estimated TWS variations based on GRACE data in West Africa from 2002 to 20146. Frappart et al. (2013) suggested that TWS variations estimated based on GRACE data could clearly exhibit the droughts and floods affected South America from 2003 to 20107. However, the GRACE data spans only thirteen years and are not sufficient to investigate the temporal characteristics of water storage variation over a long period. Comparatively, the data derived from the Global Land Data Assimilation System version 2 (GLDAS-2) provide observations since 1948, a period of nearly 70 years. Meanwhile, GLDAS-2 at a resolution of 0.25° × 0.25° (Noah), is more spatially detailed than GRACE at a spatial resolution of 1° × 1° and WaterGAP WGHM2.2 at a spatial resolution of 0.5° × 0.5°8. Additionally, GLDAS is often used in the validation of GRACE measurements, and water storage changes derived from GLDAS are consistent with those estimated from GRACE in previous studies9,10,11. Nevertheless, Yang & Chen (2015) suggested that GLDAS is more sensitive to climate change than GRACE5. In China, the terrestrial water storage varies regionally. Song et al. (2013) suggested that the total lake water storage of the Tibetan Plateau increased, whereas mass in southeastern Tibet and along the Himalayas decreased12. In the Badain Jaran Desert (western Inner Mongolia, China), both lake level and groundwater storage decreased from 2003 to 200913. Huang et al. (2013) suggested that a significant decrease in TWS has occurred in the Yangtze River basin since 199814. In the Tarim River basin (northwest China), TWS increased from 2003 to 2011 because of the recharge of snow melt15. TWS also corresponds to flooding and drought conditions16, 17. Long et al. (2014) estimated the TWS of the Yun-Gui Plateau from the 1980s to 2012, and the results showed that TWS anomalies correspond well to flood and drought events18. Although variations in TWS of different regions in China had been researched, little studies are related to TWS variation spatial pattern over China in a long term period. Thereafter, it is necessary to detect spatial patterns of water storage variation over China. In this paper, we detect (...truncated)


This is a preview of a remote PDF: https://www.nature.com/articles/s41598-017-06558-5.pdf

Zheng Chen, Weiguo Jiang, Jianjun Wu, Kun Chen, Yue Deng, Kai Jia, Xinyu Mo. Detection of the spatial patterns of water storage variation over China in recent 70 years, Scientific Reports, 2017, Issue: 7, DOI: 10.1038/s41598-017-06558-5