Magnetically-charged supersymmetric flows of gauged \( \mathcal{N}=8 \) supergravity in five dimensions

Journal of High Energy Physics, Aug 2018

Abstract We study magnetically-charged supersymmetric flow equations in a consistent truncation of gauged \( \mathcal{N}=8 \) supergravity in five dimensions. This truncation gives gauged \( \mathcal{N}=2 \) supergravity coupled to two vector multiplets and two hypermultiplets. We derive magnetically-charged flow equations of scalar fields from vector and hypermultiplets. It turns out that there could be only up to two nontrivial scalar fields out of eight from the hypermultiplets. Along the way, we recover some known AdS3 solutions of the flow equations.

A PDF file should load here. If you do not see its contents the file may be temporarily unavailable at the journal website or you do not have a PDF plug-in installed and enabled in your browser.

Alternatively, you can download the file locally and open with any standalone PDF reader:

https://link.springer.com/content/pdf/10.1007%2FJHEP08%282018%29005.pdf

Magnetically-charged supersymmetric flows of gauged \( \mathcal{N}=8 \) supergravity in five dimensions

Journal of High Energy Physics August 2018, 2018:5 | Cite as Magnetically-charged supersymmetric flows of gauged \( \mathcal{N}=8 \) supergravity in five dimensions AuthorsAuthors and affiliations Minwoo Suh Open Access Regular Article - Theoretical Physics First Online: 02 August 2018 Received: 27 April 2018 Revised: 28 June 2018 Accepted: 18 July 2018 24 Downloads Abstract We study magnetically-charged supersymmetric flow equations in a consistent truncation of gauged \( \mathcal{N}=8 \) supergravity in five dimensions. This truncation gives gauged \( \mathcal{N}=2 \) supergravity coupled to two vector multiplets and two hypermultiplets. We derive magnetically-charged flow equations of scalar fields from vector and hypermultiplets. It turns out that there could be only up to two nontrivial scalar fields out of eight from the hypermultiplets. Along the way, we recover some known AdS3 solutions of the flow equations. Keywords AdS-CFT Correspondence Supergravity Models  ArXiv ePrint: 1804.06443 Download to read the full article text Notes Open Access This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited. References [1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar [2] A.H. Chamseddine and W.A. Sabra, Magnetic strings in five-dimensional gauged supergravity theories, Phys. Lett. B 477 (2000) 329 [hep-th/9911195] [INSPIRE]. [3] D. Klemm and W.A. Sabra, Supersymmetry of black strings in D = 5 gauged supergravities, Phys. Rev. D 62 (2000) 024003 [hep-th/0001131] [INSPIRE]. [4] S.L. Cacciatori, D. Klemm and W.A. Sabra, Supersymmetric domain walls and strings in D = 5 gauged supergravity coupled to vector multiplets, JHEP 03 (2003) 023 [hep-th/0302218] [INSPIRE]. [5] E. D’Hoker and P. Kraus, Magnetic Brane Solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].MathSciNetCrossRefGoogle Scholar [6] A. Almuhairi, AdS 3 and AdS 2 Magnetic Brane Solutions, arXiv:1011.1266 [INSPIRE]. [7] A. Almuhairi and J. Polchinski, Magnetic AdS × R 2 : Supersymmetry and stability, arXiv:1108.1213 [INSPIRE]. [8] A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and Electric AdS Solutions in String-and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar [9] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE]. [10] M. Naka, Various wrapped branes from gauged supergravities, hep-th/0206141 [INSPIRE]. [11] S. Cucu, H. Lü and J.F. Vazquez-Poritz, A Supersymmetric and smooth compactification of M-theory to AdS 5, Phys. Lett. B 568 (2003) 261 [hep-th/0303211] [INSPIRE]. [12] S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdS(D − 2) × S 2 to AdS(D), Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [INSPIRE]. [13] F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE]. [14] F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefMATHGoogle Scholar [15] P. Karndumri and E. O Colgain, Supergravity dual of c-extremization, Phys. Rev. D 87 (2013) 101902 [arXiv:1302.6532] [INSPIRE]. [16] A. Amariti and C. Toldo, Betti multiplets, flows across dimensions and c-extremization, JHEP 07 (2017) 040 [arXiv:1610.08858] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar [17] F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07 (2016) 020 [arXiv:1511.09462] [INSPIRE]. [18] N. Bobev, K. Pilch and O. Vasilakis, (0, 2) SCFTs from the Leigh-Strassler fixed point, JHEP 06 (2014) 094 [arXiv:1403.7131] [INSPIRE]. [19] D. Klemm, N. Petri and M. Rabbiosi, Black string first order flow in N = 2, d = 5 abelian gauged supergravity, JHEP 01 (2017) 106 [arXiv:1610.07367] [INSPIRE]. [20] A. Khavaev and N.P. Warner, A Class of N = 1 supersymmetric RG flows from five-dimensional N = 8 supergravity, Phys. Lett. B 495 (2000) 215 [hep-th/0009159] [INSPIRE]. [21] N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Supersymmetric Charged Clouds in AdS 5, JHEP 03 (2011) 070 [arXiv:1005.3552] [INSPIRE]. [22] M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8 D = 5 Supergravity, Nucl. Phys. B 259 (1985) 460 [INSPIRE]. [23] M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 Supergravity in Five-Dimensions, Phys. Lett. B 154 (1985) 268 [INSPIRE]. [24] M. Günaydin, L.J. Romans and N.P. Warner, Compact and Noncompact Gauged Supergravity Theories in Five-Dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].ADSCrossRefGoogle Scholar [25] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar [26] A. Ceresole and G. Dall’Agata, General matter coupled N = 2, D = 5 gauged supergravity, Nucl. Phys. B 585 (2000) 143 [hep-th/0004111] [INSPIRE]. [27] A. Ceresole, G. Dall’Agata, R. Kallosh and A. Van Proeyen, Hypermultiplets, domain walls and supersymmetric attractors, Phys. Rev. D 64 (2001) 104006 [hep-th/0104056] [INSPIRE]. Copyright information © The Author(s) 2018 Authors and Affiliations Minwoo Suh1Email author1.Department of PhysicsKyungpook National UniversityDaeguKorea


This is a preview of a remote PDF: https://link.springer.com/content/pdf/10.1007%2FJHEP08%282018%29005.pdf

Minwoo Suh. Magnetically-charged supersymmetric flows of gauged \( \mathcal{N}=8 \) supergravity in five dimensions, Journal of High Energy Physics, 2018, 5, DOI: 10.1007/JHEP08(2018)005