#### Magnetically-charged supersymmetric flows of gauged \( \mathcal{N}=8 \) supergravity in five dimensions

Journal of High Energy Physics
August 2018, 2018:5 | Cite as
Magnetically-charged supersymmetric flows of gauged \( \mathcal{N}=8 \) supergravity in five dimensions
AuthorsAuthors and affiliations
Minwoo Suh
Open Access
Regular Article - Theoretical Physics
First Online: 02 August 2018
Received: 27 April 2018
Revised: 28 June 2018
Accepted: 18 July 2018
24 Downloads
Abstract
We study magnetically-charged supersymmetric flow equations in a consistent truncation of gauged \( \mathcal{N}=8 \) supergravity in five dimensions. This truncation gives gauged \( \mathcal{N}=2 \) supergravity coupled to two vector multiplets and two hypermultiplets. We derive magnetically-charged flow equations of scalar fields from vector and hypermultiplets. It turns out that there could be only up to two nontrivial scalar fields out of eight from the hypermultiplets. Along the way, we recover some known AdS3 solutions of the flow equations.
Keywords AdS-CFT Correspondence Supergravity Models
ArXiv ePrint: 1804.06443
Download to read the full article text
Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
[1]
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
[2]
A.H. Chamseddine and W.A. Sabra, Magnetic strings in five-dimensional gauged supergravity theories, Phys. Lett. B 477 (2000) 329 [hep-th/9911195] [INSPIRE].
[3]
D. Klemm and W.A. Sabra, Supersymmetry of black strings in D = 5 gauged supergravities, Phys. Rev. D 62 (2000) 024003 [hep-th/0001131] [INSPIRE].
[4]
S.L. Cacciatori, D. Klemm and W.A. Sabra, Supersymmetric domain walls and strings in D = 5 gauged supergravity coupled to vector multiplets, JHEP 03 (2003) 023 [hep-th/0302218] [INSPIRE].
[5]
E. D’Hoker and P. Kraus, Magnetic Brane Solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].MathSciNetCrossRefGoogle Scholar
[6]
A. Almuhairi, AdS 3 and AdS 2 Magnetic Brane Solutions, arXiv:1011.1266 [INSPIRE].
[7]
A. Almuhairi and J. Polchinski, Magnetic AdS × R 2 : Supersymmetry and stability, arXiv:1108.1213 [INSPIRE].
[8]
A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and Electric AdS Solutions in String-and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
[9]
J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].
[10]
M. Naka, Various wrapped branes from gauged supergravities, hep-th/0206141 [INSPIRE].
[11]
S. Cucu, H. Lü and J.F. Vazquez-Poritz, A Supersymmetric and smooth compactification of M-theory to AdS 5, Phys. Lett. B 568 (2003) 261 [hep-th/0303211] [INSPIRE].
[12]
S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdS(D − 2) × S 2 to AdS(D), Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [INSPIRE].
[13]
F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].
[14]
F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].ADSCrossRefMATHGoogle Scholar
[15]
P. Karndumri and E. O Colgain, Supergravity dual of c-extremization, Phys. Rev. D 87 (2013) 101902 [arXiv:1302.6532] [INSPIRE].
[16]
A. Amariti and C. Toldo, Betti multiplets, flows across dimensions and c-extremization, JHEP 07 (2017) 040 [arXiv:1610.08858] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
[17]
F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07 (2016) 020 [arXiv:1511.09462] [INSPIRE].
[18]
N. Bobev, K. Pilch and O. Vasilakis, (0, 2) SCFTs from the Leigh-Strassler fixed point, JHEP 06 (2014) 094 [arXiv:1403.7131] [INSPIRE].
[19]
D. Klemm, N. Petri and M. Rabbiosi, Black string first order flow in N = 2, d = 5 abelian gauged supergravity, JHEP 01 (2017) 106 [arXiv:1610.07367] [INSPIRE].
[20]
A. Khavaev and N.P. Warner, A Class of N = 1 supersymmetric RG flows from five-dimensional N = 8 supergravity, Phys. Lett. B 495 (2000) 215 [hep-th/0009159] [INSPIRE].
[21]
N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Supersymmetric Charged Clouds in AdS 5, JHEP 03 (2011) 070 [arXiv:1005.3552] [INSPIRE].
[22]
M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8 D = 5 Supergravity, Nucl. Phys. B 259 (1985) 460 [INSPIRE].
[23]
M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 Supergravity in Five-Dimensions, Phys. Lett. B 154 (1985) 268 [INSPIRE].
[24]
M. Günaydin, L.J. Romans and N.P. Warner, Compact and Noncompact Gauged Supergravity Theories in Five-Dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].ADSCrossRefGoogle Scholar
[25]
D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
[26]
A. Ceresole and G. Dall’Agata, General matter coupled N = 2, D = 5 gauged supergravity, Nucl. Phys. B 585 (2000) 143 [hep-th/0004111] [INSPIRE].
[27]
A. Ceresole, G. Dall’Agata, R. Kallosh and A. Van Proeyen, Hypermultiplets, domain walls and supersymmetric attractors, Phys. Rev. D 64 (2001) 104006 [hep-th/0104056] [INSPIRE].
Copyright information
© The Author(s) 2018
Authors and Affiliations
Minwoo Suh1Email author1.Department of PhysicsKyungpook National UniversityDaeguKorea